• Title/Summary/Keyword: Critical stiffness

Search Result 529, Processing Time 0.028 seconds

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang;Zhang, Runhong;Goh, Anthony. T.C.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.577-588
    • /
    • 2018
  • A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

Dynamic Instability of Elastically Restrained Beams under Distributed Tangential Forces (분포접선력을 받는 탄성지지된 보의 동적 불안정)

  • 류봉조;김인우;이규섭;임경빈;최봉문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.140-147
    • /
    • 1998
  • The dynamic behavior of elastically restrained beams under the action of distributed tangential forces is investigated in this paper. The beam, which is fixed at one end, is assumed to rest on an intermediate spring support. The governing equations of motion are derived from the energy expressions, and the finite element formulation is employed to calculate the critical distributed tangential force. Jump phenomena for the critical distributed tangential force and instability types are presented for various spring stiffnesses and support positions. Stability maps are generated by performing parametric studies to show how the distributed tangential forces affect the frequencies and the stability of the system considered. Through the numerical simulations, the following conclusioils are obtained: (i) Only flutter type instability exists for the dimensionless spring stiffness K $\leq$ 97, regardless of the position of the spring support. (ii) For the dimensionless spring stiffness K $\leq$ 98, the transition from flutter to divergence occurs at a certain position of the spring support, and the transition position moves from the free end to the free end of the beam as the spring stiffness increases. (iii) For K $\leq$ 10$^{6}$ the support condition can be regarded as a rigid support condition.

  • PDF

A study on the Critical speed of Korean Tilting Train (한국형 틸팅열차의 임계속도에 관한 연구)

  • Kim, Nam-Po;Kim, Jung-Seok;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.162-168
    • /
    • 2007
  • The critical speed above which the vehicle become unstable should be fundamentally verified in the development of new train. In case of high speed tilting train, which require both higher critical speed and higher curving speed, the critical speed should be more carefully treated because the both requirements are conflicting each other in the conventional train design. This research has been performed to estimate the linear and non-linear critical speed of 200km/h Korean Tilting Train which has been developing. The newly developed self-steering mechanism was attached to the tilting train to secure critical speed under the lower yaw stiffness which was inevitable to secure higher curving performance. The simulation to predict critical speed was done by commercial vehicle dynamic S/W. Full scale roller rig test was carried out for the validation of numerical results and effectiveness of self-steering mechanism.

  • PDF

Critical Speed Analysis of a 7 Ton Class Liquid Rocket Engine Oxidizer Pump (7톤급 액체로켓엔진 산화제펌프 임계속도 해석)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Choi, Chang-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • A critical speed analysis of oxidizer pump was peformed for a 7 ton class liquid rocket engine as the third stage engine of the Korea Space Launch Vehicle II. Based on the previously developed experimental 30 ton class turbopump and presently developing 75 ton class turbopump for the first and second stage rocket engine of Korea Space Launch Vehicle II, a layout and configuration of the 7 ton class turbopump rotor assembly are determined. A ball bearing stiffness analysis and rotordynamic analysis are performed for both of the bearing unloaded condition and loaded condition. Structural flexibility of the oxidizer pump casing is also included to predict critical speeds. From the numerical analysis, it is confirmed that the rotor system acquires sufficient separate margin of critical speed as a sub-critical rotor even though decrease of critical speed due to the casing structural flexibility.

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.

Study on the dynamic stiffness variation of boring bar by Taguchi Method (다구찌 방법을 이용한 보링바의 동강성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.98-104
    • /
    • 2009
  • The objective of this paper is to investigate the effect of factors on the dynamic stiffness variation of boring bar. The experiment was carried out by Taguchi Method and Orthogonal array table. The results indicate that overhang was found out to be dominant factor with 95% confident intervals and feed rate and depth of cut were insignificant. In addition, analysis of loss function shows that loss value increased sharply from 3D to 4D(D is a shank diameter). Consequently, there is critical point which changes property of dynamic stiffness.

  • PDF

Buckling Load of Lattice Timber Roof Structure considering Stiffness of Connection with Asymmetric Snow Load (접합부 강성과 비대칭 적설하중 적용을 통한 목조 래티스 지붕 구조물의 좌굴하중 특성)

  • Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 2023
  • A timber lattice roof, which has around 30m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by stiffness of connection with various asymmetric snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the asymmetric snow load with the lower level stiffness of connection decreased the level of buckling load significantly.

Rotordynamic design of Pulsed Generator (펄스발전기의 로터다이나믹 설계)

  • Kim, Yeong-Chun;Park, Chul-Hyun;Park, Hei-Joo;Moon, Tae-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.805-809
    • /
    • 2002
  • The support bearing requires high DN to raise specific energy efficiency for the state of the art rotating machine with high speed. Especially for the system has a big rotor(670 kgf) with high speed(about one million DNs) such as the pulsed generator, the selection of the bearing and lubrication method are very important. So the study for the critical speed of hollow rotor as well in accordance with high speed rotor and a full analysis are needed for rotor bearing system. This paper describes the analysis for rotor bearing system of pulsed generator compared with experimental data. The bearing and lubrication method are discussed as well with experimental data.

  • PDF

A Study on the Dynamic Characteristics of Turbine due to the Stiffness of Bearing-Pedestal (베어링-지지구조물의 영향에 따른 터빈의 동특성 변화)

  • Kim, Hee-Soo;Bae, Yong-Chae;Kim, Yeon-Whan;Lee, Hyun;Kim, Sung-Hwi;Lee, Young-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1871-1874
    • /
    • 2000
  • It is impossible to predict accurately the dynamic behavior of turbine-generator system because bearing, and rotor characteristics are nonlinear and different from temperature, load, operation speed and bearing lubricant oil property. Especially, the characteristics of turbine hoods affect much the entire vibration characteristics of turbine. As the dynamic stiffness of turbine hoods are changed, the critical speeds of rotor are shifted. In this paper, the vibration behavior of turbine-generator is analyzed by using component mode synthesis and the critical speeds measured during shut-down are compared with the analytic results. It is confirmed that the 1st natural frequency and the mode shape are well in agreement with actual measured data.

  • PDF