• Title/Summary/Keyword: Critical range

Search Result 1,665, Processing Time 0.04 seconds

Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses

  • Zhang, Jingyu;Zhu, Jiacheng;Ding, Shurong;Chen, Liang;Li, Wenjie;Pang, Hua
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1138-1147
    • /
    • 2018
  • Delayed hydride cracking (DHC) is an important failure mechanism for Zircaloy tubes in the demanding environment of nuclear reactors. The threshold stress intensity factor, $K_{IH}$, and critical hydride length, $l_C$, are important parameters to evaluate DHC. Theoretical models of them are developed for Zircaloy tubes undergoing non-homogenous temperature loading, with new stress distributions ahead of the crack tip and thermal stresses involved. A new stress distribution in the plastic zone ahead of the crack tip is proposed according to the fracture mechanics theory of second-order estimate of plastic zone size. The developed models with fewer fitting parameters are validated with the experimental results for $K_{IH}$ and $l_C$. The research results for radial cracking cases indicate that a better agreement for $K_{IH}$ can be achieved; the negative axial thermal stresses can lessen $K_{IH}$ and enlarge the critical hydride length, so its effect should be considered in the safety evaluation and constraint design for fuel rods; the critical hydride length $l_C$ changes slightly in a certain range of stress intensity factors, which interprets the phenomenon that the DHC velocity varies slowly in the steady crack growth stage. Besides, the sensitivity analysis of model parameters demonstrates that an increase in yield strength of zircaloy will result in a decrease in the critical hydride length $l_C$, and $K_{IH}$ will firstly decrease and then have a trend to increase with the yield strength of Zircaloy; higher fracture strength of hydrided zircaloy will lead to very high values of threshold stress intensity factor and critical hydride length at higher temperatures, which might be the main mechanism of crack arrest for some Zircaloy materials.

Long-term Outcome of Treatment of Mycobacterium Abscessus Pulmonary Disease (Mycobacterium abscessus 폐질환 치료의 장기 성적)

  • Jo, Kyung Uk;Park, Soo Jung;Hong, Seok Chan;Oh, Yeon-Mok;Lee, Sang Do;Kim, Woo Sung;Kim, Dong Soon;Kim, Won Dong;Shim, Tae Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.2
    • /
    • pp.98-104
    • /
    • 2007
  • Background: Although there is an increasing incidence of Mycobacterium abscessus pulmonary disease in Korea, the optimal therapeutic regimen has not yet been established and there are no reports of the long-term treatment outcomes. This study examined the long-term treatment outcomes of M. abscessus pulmonary disease. Methods: Twenty-nine patients diagnosed with M. abscessus pulmonary according to the American Thoracic Society criteria and treated from January 1996 to December 2003 were enrolled in ghis study. The clinical characteristics, radiological findings, treatment outcome, and follow up data were analyzed retrospectively. Results: The mean age of the 29 patients was 56.1 (${\pm}13.6$) years and there was a female (22/29) dominance. The chest radiography revealed the nodular bronchiectatic type to be dominant (69%, 20/29). Twenty-seven (93.1%) were prescribed clarithromycin-containing regimens, and injectable drugs, mainly aminoglycosides, were included in the regimen of nineteen patients. The most predominant regimen (48.3%) consisted of clarithromycin and amikacin. The treatment success, failure, and default were achieved in 19(65.5%), 9(31.0%), and 1(3.4%), respectively. The median duration to culture conversion was 42 days (range 15-362) and the median duration of treatment in the success group was 543 days (range 176-1,160). An adjunctive surgical resection was performed in five patients, which resulted in treatment success in two patients. After the completion of treatment, nineteen patients were followed up for a median duration of 931 days (range 230-2,294). Only one (5.3%) patient relapsed 45 days after completing treatment. Conclusion: Treatment with clarithromycin-containing regimens resulted in a successful treatment in approximately two thirds of patients with M. abscessus pulmonary disease. The long-term relapse rate was also quite low.

Temperature Effects on Impact Fracture Mechanisms of Glass Fiber/Polypropylene Campsites (유리섬유/폴리프로필렌 복합재료의 충격파괴기구에 대한 온도효과)

  • KOH S. W.;Um Y. S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.314-319
    • /
    • 2004
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness GIC was performed by the impact test in this work The main goal of this work is to study effects of temperature in the impact test with glass fiber/polypropylene(GF/pp) composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of $60^{\circ}C\;to\;-50^{\circ}C$ by impact test. The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

Estimation of Critical Degree of Hydration and Thermal Expansion Coefficient of Early-Age Concrete from Measured Temperature, Strain and Stress (온도, 변형 및 응력 계측을 통한 초기재령 콘크리트의 임계수화도 및 열팽창계수 추정)

  • 오병환;최성철;신준호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.809-814
    • /
    • 2002
  • Recently, the properties of early-age concrete are increasingly important because these properties directly influence the behavior of early-age concrete structures including stress and cracking behavior. Nevertheless, the studies on early-age concrete are limited to strength and temperature development. The purpose of present study is to propose a simple and rational method which can predict the stress and strain behavior of young age concrete. A series of test have been done to measure the temperature development, strains and stresses in concrete members. The concept of equivalent age was used to define the degree of hydration and this degree of hydration was used to calculate the strength and elastic modulus. The critical degree of hydration and thermal expansion coefficient were calculated using experimental data. It is seen that the critical degree of hydration range from 0.05 to 0.11 based on the measuring method. The thermal expansion coefficient was calculated based on the measured non-mechanical strain and it is found that the coefficient decreases slightly with the increase of age. The consideration of critical degree of hydration in calculating stresses gives more accurate results. The present study provides useful method and data in evaluating early-age behavior of concrete structure.

  • PDF

A Study on the Impact Fracture Behavior of Glass Fiber Polyethylene Composites (GF/PE 복합재료의 충격파괴거동에 관한 연구)

  • 엄윤성;최영근;양병춘;김형진;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.167-173
    • /
    • 2003
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness G$_{IC}$ was performed by the impact test in this work. The main goal of this work is to study the effect of temperature and span of specimen supports on the results of Charpy impact test for GF/PE composite. The critical fracture energy and failure mechanism of GF/PE composites were investigated in the temperature range of $60^{\circ}C;to;-50^{\circ}C$ by the Charpy impact test. The critical fracture energy showed the maximum at the ambient temperature, and it tended to decrease as the temperature increased or decreased from the ambient temperature. The major failure mechanisms are the fiber matrix debonding, the fiber pull-out and/or delamination and the matrix deformation.n.

A Study on the Flow Characteristics in Double Coaxial Pipe Jets (동축이중원관 분류에 있어서의 유동 특성에 관한 연구)

  • Shin, C.H.;Kim, K.H.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.46-53
    • /
    • 1996
  • The present study is aiming at improving the performance of main nozzle of an air jet loom with a modified reed and auxiliary nozzles. The double coaxial pipe jets consisting of a central air jet and an annular air jet have been experimentally investigated. The duter jet has a potential core and a constant velocity. The inner jet through an inner long pipe is induced by the subatmospheric pressure near the inner nozzle edge, and the jet velocity of an inner pipe is always lower than that of a outer pipe. The static pressures of the main nozzle over a wide range of the nozzle tank pressure were measured, and the nozzle velocity and Mach numbers were analytically calculated. Experiment81 results indicate that the critical condition of Mach number of unity to occur at the two positions in a main nozzle; one of them is the needle tip and the other is the acceleration tube exit An increase in the tank pressure causes the critical throat condition to occur at the two positions above. The velocity of acceleration-tube exit is maximum at the critical length L* and flow patter in acceleration-tube over critical lengh remains unstable.

  • PDF

Effect of Temperature on the Critical Micelle Concentration of Decylpyridinium Chloride (Decylpyridinium Chloride 용액의 Critical Micelle Concentration에 미치는 온도의 영향)

  • Han Man-Woon;Lee Chong-Man
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.201-204
    • /
    • 1972
  • The critical micelle concentrations of decylpyridinium chloride in aqueous solutions have been determined by the electrical conductance measurements in the range of $10^{\circ}C$-$50^{\circ}C$. The temperature variation of the critical micelle concentrations has shown the minimum at the vicinity of $15^{\circ}C$. The Clausius-Clapeyron type equation of log (c.m.c.) versus temperature has been established. The values ${\Delta}Hm$ and the other thermodynamic properties associated with micelle formation have been determined using the above equation and compared with that of dodecylpyridinium chloride and dodecylpyridinium bromide.

  • PDF

A Study on the Characteristics of Smoke Control using PIV in Tunnel Fires (터널내 화재시 PIV를 이용한 연기제어 특성에 관한 연구)

  • Ko, Jae-Woong;Kim, Jong-Yoon;Seo, Tae-Beom;Lim, Kyung-Bum;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.6-11
    • /
    • 2006
  • This study aims to measure a smoke density and velocity by using the PIV method in case a fire occurs in tunnels. By doing so, this will estimate a critical velocity, examine its appropriateness, and present the basic materials necessary for designing a smoke control equipment. For this study, a visualization test was conducted based on the 1/20 miniature of a real tunnel according to the Froude scaling. As a part of basic experiments, a correlation between smoke density and brightness was analyzed here, and a critical velocity was estimated on the condition that a fire breaks out in tunnels. As a result, this study finds that there is a correlation between smoke density and brightness within a range of 100% to 30% transmittance, from which a quantitative smoke density can be obtained. The study also suggests that a critical velocity calculated from the Kennedy formula shows about 10% difference from that estimated in the test.

Dynamic Behavior of Rotating Shaft System Corresponding to Operating Modes (운전모드에 따른 회전축계의 동적거동)

  • Kim, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2744-2751
    • /
    • 1996
  • In case of limited power supply, a rotating shaft system may not reach its operating speed that is greater than its critical speed, but the speed oscillates with small ampllitude near critical speed. As a result, it is considered that the operating mode plays an important role in the smooth start of machines. In order to investigate the dynamic behaviors of the rotating shaft system at the beginning stage, one has derived the equations of motion whose degrees of freedom is three, two translations and one rotation. The simultaneous differential equations are numerically solved by using runge-Kutta method, and thus the small time step length could be required corresponding to the stability of solution. Three types of operating modes dependent upon the driving torque rate have been numerically investigated according to the maximum displacement of shaft center. The first type of relation is linear, the second type is composed of two linear curves recommended by machine manufacturer, and the last one is the proposed torque curve reflecting the frequency response curve of one degree of freedom system. For the second type of modes, it is found that the optimal range of intermediate speed to the critical speed lies between 0.8 and 0.9. In addition to that, the maximum displacement can be reduced more if the third type of mode is utilized.

Feasibility of the 3D Printing Materials for Radiation Dose Reduction in Interventional Radiology (인터벤션 시술 시 환자의 선량감소를 위한 3D 프린팅 재료의 적용성 평가)

  • Cho, Yong-In
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • Interventional radiology is performed under real-time fluoroscopy, and patients are exposed to a wide range of exposures for a long period of time depending on the examination and procedure. However, studies on radiation protection for patients during an intervention are insufficient. This study aims to evaluate the doses exposed during the intervention and the applicability of 3D printing materials. The organ dose for each intervention site was evaluated using a monte carlo simulatio. Also, the dose reduction effect of the critical organs was calculated when using a shielding device using 3D printing materials. As a result, the organ dose distribution for each intervention site showed a lower dose distribution for organs located far from the x-ray tube. It was analyzed that the influence of scattered rays was higher in the superficial organs of the back of the human body where x-rays were incident. The dose reduction effect on the critical organ using the 3D printing shield showed the highest testis among the gonads, and in the case of other organs, the dose reduction effect gradually decreased in the order of the eye, thyroid, breast, and ovary. Accordingly, it is judged that the 3D printed shield will be sufficiently usable as a shielding device for the radiation protection of critical organs.