• Title/Summary/Keyword: Critical micelle concentration

Search Result 234, Processing Time 0.027 seconds

Solution properties of sodium n-dodecyl sulfate in the presence of meso-tetrakis (N-methylpyridinium-4-yl) porphyrin (Meso-tetrakis (N-methylpyridinium-4-yl) porphyrin 존재 하에서 sodium n-dodecyl sulfate 용액 성질)

  • Hassanpour, Azin;Azani, Mohammad-Reza;Bordbar, Abdol-Khalegh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • The solution properties of sodium n-dodecyl sulfate, as an anionic surfactant in the presence of a cationic watersoluble 5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl) porphyrin (TMPyP) has been comprehensively studied by means of conductometry, UV-vis and resonance light scattering (RLS) spectroscopies. The results represent the decreasing of critical micelle concentration of SDS solution due to increasing of TMPyP concentration. The stabilization of SDS micelle is due to neutralization of negative charge at the micelle surface. The presence of three different species of TMPyP in SDS solution has been unequivocally demonstrated: free porphyrin monomers, porphyrin monomers or aggregates bound to the micelles, and nonmicellar porphyrin/surfactant aggregates. Our results show SDS induced an aggregation in TMPyP. In fact two kinds of J-aggregations were observed: one of them for porphyrin monomers or aggregates bound to the micelles and the other for nonmicellar porphyrin/surfactant aggregates. However, the results represent the electrostatic interaction of TMPyP with SDS anion below the cmc.

Thermodynamics on the Mixed Micellization of Sodium Dodecylsulfate(SDS) with Sodium Dodecylbenzenesulfonate(DBS) in Pure Water (순수 물에서 Sodium Dodecylsulfate(SDS)와 Sodium Dodecylbenzenesulfonate(DBS)의 혼합미셀화에 대한 열역학적 고찰)

  • Lee, Byung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.420-426
    • /
    • 1996
  • The critical micelle concentration(CMC) and the counterion binding $constant(\beta)$ at the CMC of the mixtures of Sodium dodecylsulfate(SDS) with Sodium dodecylbenzenesulfonate(DBS) in aqueous solutions have been determined from the concentration dependence of electrical conductance at several temperatures from $15^{\circ}C$ to $35^{\circ}C.$ Thermodynamic parameters(${\Delta}C_p,\;{\Delta}G_m^{\circ},\;{\Delta}H_m^{\circ}$${\Delta}S_m^{\circ}$ and ${\Delta}C_p$), associated with the micelle formation of SDS/DBS mixtures, have been estimated from the temperature dependence of CMC and $\beta$ values. The measured values of ${\Delta}G_m^{\circ}\;and\;{\Delta}C_p$ are negative but the values of ${\Delta}S_m/^{\circ}$ are positive in the whole measured temperature region. The significance of these thermodynamic parameters and their relation to the theory of the micelle formation of SDS/DBS mixtures have been also considered.

  • PDF

Viscosity and Density Studies on the Second CMC of the Aqueous Solution of Dodecyl Pyridinium Chloride (粘性度 및 密度測定에 依한 Dodecyle Pyridinium Chloride 水溶液의 第二 CMC에 關한 硏究)

  • Young Won Youn;Kun Moo Lee
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.289-293
    • /
    • 1975
  • According to the viscosity and density studies of an aqueous solution of dodecyl pyridinium chloride (DPC) it was shown that the 2nd critical micelle concentration (2nd cmc) existed in the solution in addition to the 1st cmc. The volume fraction ${\phi}_m$ of the hydrated micelle was calculated by using the following equation: ${\Pi}_{rm}=1+2.5{\phi}_m+14.1{\phi}_m^2$ It has been found that the increment of ${\phi}_m$ in the ${\phi}_m$ vs. $C_m$ curve decreased at near the 2nd cmc. And the partial specific volume ($\={v}$) of DPC obtained from the density measurement also decreased rapidly at near the 2nd cmc and remains constant value above the 2nd cmc. This may be attributed to a change in the micelle structure at the 2nd cmc caused by a variation in the type of aggregation and by a decrease in the counterion binding by the micelle.

  • PDF

Study on the micellization of cetyltrimethyl ammonium bromide in 4-biphenyl acetate solution (4-biphenyl acetate 수용액에서 Cetyltrimethyl Ammonium Bromide의 미셀화에 관한 연구)

  • Oh, Jung Hee
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.107-116
    • /
    • 1995
  • The critical micelle concentration(CMC) of CTAB was determined with changes in absorbance at 202nm band of 4-biphenyl acetate($BPA^-$). With $BPA^-$ as a probe, the effect of temperature on CMC of CTAB has been observed between $30^{\circ}C{\sim}70^{\circ}C$. In this range of temperature the values of CMC are $1.18{\times}10^{-4}{\sim}2.02{\times}10^{-4}M$. The free energy(${\Delta}G^{\circ}m$) and enthalpy(${\Delta}H^{\circ}m$)for the micellization of CTAB was negative and the entropy(${\Delta}S^{\circ}m$) was a large positive value. The micellization of CTAB is considered as a spontaneous process and to involve a phase transition. The orientational binding of 4-biphenyl acetate anion to the CTAB micelle interface has been studied with $300MHz\;H^1-NMR$ data. The change in chemical shift of proton in CTAB as well as those of the protons in $BPA^-$ have been investigated by increasing the mole fraction of the anion in the mixed solutions. The changes in chemical shift with increasing mole fraction of anion($BPA^-$) indicate the formation of mixed micelle between CTAB and $BPA^-$. The changes in chemical shifts of methylene protons in CTAB, demonstrate the penetration of $BPA^-$ into the palisade layer of the CTAB micelle.

  • PDF

Effect of Ultrasound on the Decomposition of Sodium Dodecylbenzene Sulfonate in Aqueous Solution (Sodium Dodecylbenzene Sulfonate 수용액의 분해반응에서 초음파 효과)

  • Yim, Bong-Been
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.561-567
    • /
    • 2004
  • The influence of ultrasound frequency, dissolved gases, and initial concentration on the decomposition of sodium dodecylbenzene sulfonate(DBS) aqueous solution was investigated using ultrasound generator with 200 W ultrasound power. The decomposition rates at three frequencies(50, 200, and 600 kHz) examined under argon atmosphere were highest at 200 kHz. The highest observed decomposition rate at 200 kHz occurred in the presence of oxygen followed by air and argon, helium, and nitrogen. The effect of initial concentration of DBS on the ultrasonic decomposition was decreased with increasing initial concentration and would depend upon the formation of micelle in aqueous solution. It appears that the ultrasound frequency, dissolved gases, and initial concentration play an important role on the sonolysis of DBS. Sonolysis of DBS mainly take place at the interfacial region of cavitation bubbles by both OH radical attack and pyrolysis to alkyl chain, aromatic ring, and headgroup.

Study on the Micellization of TTAB/Brij 35 Mixed Systems in Aqueous Solutions of n-Butanol (n-부탄올 수용액에서 TTAB/Brij 35 혼합계면활성제의 미셀화에 대한 연구)

  • Gil, Han-Nae;Lee, Byung-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.267-272
    • /
    • 2007
  • The critical micelle concentration (CMC) and the counterion binding constant (B) in a mixed micellar state of the trimethyltetradecylammonium bromide (TTAB) with the polyoxyethylene (23) lauryl ether (Brij 35) at $25^{\circ}C$ in water and in aqueous solutions of n-butanol (0.1 M, 0.2 M, and 0.3 M) were determined as a function of ${\alpha}_1$ (the overall mole fraction of TTAB) by the use of electric conductivity method and surface tensiometer method. Various thermodynamic parameters ($X_i$, ${\gamma}_i$, $C_i$, ${a_i}^M$, ${\beta}$, and ${\Delta}H_{mix}$) were calculated by means of the equations derived from the nonideal mixed micellar model. The effects of n-butanol on the micellization of TTAB/Brij 35 mixtures have been also studied by analyzing the measured and calculated thermodynamic parameters.

Comparative Study on the Micellization of SDS/Brij 30, DBS/Brij 30, and SDS/DBS Mixed Surfactant Systems in Pure Water (순수 물에서 SDS/Brij 30, DBS/Brij 30 및 SDS/DBS 혼합계면활성제의 미셀화에 대한 비교연구)

  • Lee, Byung-Hwan;Park, In-Jung
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.379-384
    • /
    • 2011
  • The critical micelle concentration (CMC) and the counter ion binding constant (B) for the mixed micellizations of DBS (sodium dodecylbenzenesulfonate), SDS (sodium dodecylsulfate), and Brij 30 (polyoxyethylene(4) lauryl ether) at $25^{\circ}C$ in pure water were determined by the use of electric conductivity and surface tension measuring methods. Various thermodynamic parameters ($X_i,\;{\gamma}i,\;C_i,\;a_i^M,\;{\beta}$, and ${\Delta}H_{mix}$) were calculated and compared with each other mixed surfactant system by means of the equations derived from the nonideal mixed micellar model. The results show that the SDS molecule interacts more strongly with Brij 30 molecule than DBS molecule and that the SDS/Brij 30 mixed surfactant system has the greatest negative deviation from the ideal mixed micellar model and the SDS/DBS mixed system has followed almost the ideal mixed micellar model.

Effect of n-Butanol on the Micellization of DBS/Brij 35 Mixed Surfactant Systems (DBS/Brij 35 혼합계면활성제의 미셀화에 미치는 n-부탄올 효과)

  • Lee, Byeong-Hwan;Park, In-Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.5
    • /
    • pp.355-361
    • /
    • 2006
  • The critical micelle concentration (CMC) and the counterion binding constant (B) in a mixed micellar state of the sodium dodecylbenzenesulfonate (DBS) with the polyoxyethylene(23) lauryl ether (Brij 35) at 25oC in water and aqueous solutions of n-butanol (0.1M, 0.2M, and 0.3M) were determined as a function of a1 (the overall mole fraction of DBS) by the use of electric conductivity method and surface tensiometer method. Various thermodynamic parameters (Xi, i, Ci, aiM, , and Hmix) were calculated by means of the equations derived from the nonideal mixed micellar model. The effect of n-butanol on the micellization of the DBS/Brij 35 mixtures has been also studied by analyzing the measured and calculated thermodynamic parameters.

Synthesis and Properties of Glycolic Acid Ester Type Cationic Surfactant (글리콜산 에스테르계 양이온 계면활성제의 합성 및 물성)

  • Park, Jong-Kwun;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • A cationic ester type surfactant, namely N-2-hydroxy-3-(2-hydroxyacetoxy) proply-N,N-dimethyldodecylaminium chloride(HPDA) was synthesized and confirmed by FT-IR and $^1H$-NMR spectroscopy. Surface tensions on the diluted aqueous solutions of the synthetic compounds were measured and evaluated critical micelle concentration. Surface tension was 33~34 dyne/cm in the range of $10^{-3}{\sim}10^{-2}mol/L$ and critical micelle concentration(c.m.c) value was $8.5{\times}10^{-3}mol/L$ by surface tension method. Emulsifying properties of the synthetic surfactant(HPDA) and Sodium lauryl sulfate (SLS), tetradecyl trimethyl ammonium bromide (TTAB) was tested. As a results, synthetic glycolic acid ester type compounds(HPDA) has been confirmed as a good emulsifier. The foaming power and stability of synthesized ester type surfactant was measured by Ross-Miles method.

Comparative Study on the Mixed Micellizations of Anionic Surfactant (DBS) with Nonionic Surfactnats (Brij 30 and Brij 35) (음이온성 계면활성제(DBS)와 비이온성 계면활성제(Brij 30과 Brij 35)와의 혼합미셀화에 대한 비교연구)

  • Park, In-Jung;Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.491-498
    • /
    • 2009
  • The critical micelle concentration (CMC) and the counter ion binding constant (B) for the mixed micellizations of DBS (sodium dodecylbenzenesulfonate) with Brij 30 (polyoxyethylene(4) lauryl ether) and Brij 35 (polyoxyethylene (23) lauryl ehter) at 25 ${^{\circ}C}$ in pure water and in aqueous solutions of n-butanol were determined as a function of $\alpha$1 (the overall mole fraction of DBS) by the use of electric conductivity method. Various thermodynamic parameters (Xi, $\gamma$i, Ci, aiM, $\beta$, and ${\Delta}H_{mix}$) were calculated and compared for each mixed surfactant system by means of the equations derived from the nonideal mixed micellar model. There sults show that the molecules of DBS interact more strongly with Brij 35 than Brij 30 and that the DBS/Brij35 mixed system has greater negative deviation from the ideal mixed micellar model than the DBS/Brij 30mixed system.