Browse > Article

Study on the Micellization of TTAB/Brij 35 Mixed Systems in Aqueous Solutions of n-Butanol  

Gil, Han-Nae (Department of Applied Chemical Engineering, Korea University of Technology & Education)
Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Technology & Education)
Publication Information
Applied Chemistry for Engineering / v.18, no.3, 2007 , pp. 267-272 More about this Journal
Abstract
The critical micelle concentration (CMC) and the counterion binding constant (B) in a mixed micellar state of the trimethyltetradecylammonium bromide (TTAB) with the polyoxyethylene (23) lauryl ether (Brij 35) at $25^{\circ}C$ in water and in aqueous solutions of n-butanol (0.1 M, 0.2 M, and 0.3 M) were determined as a function of ${\alpha}_1$ (the overall mole fraction of TTAB) by the use of electric conductivity method and surface tensiometer method. Various thermodynamic parameters ($X_i$, ${\gamma}_i$, $C_i$, ${a_i}^M$, ${\beta}$, and ${\Delta}H_{mix}$) were calculated by means of the equations derived from the nonideal mixed micellar model. The effects of n-butanol on the micellization of TTAB/Brij 35 mixtures have been also studied by analyzing the measured and calculated thermodynamic parameters.
Keywords
TTAB; Brij 35; critical micelle concentration; counter ion binding constant; non ideal mixed micellar model;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 M. Ueno and H. Asano, Mixed Surfactant Systems, K. Ogino and M. Abe, Ed.; Marcel Dekker Inc.: New York, U. S. A., 258 (1993)
2 C. Treiner, M. Nortz, C. Vaution, and F. Puisieux, J. Colloid Interface Sci, 125, 261 (1988)   DOI   ScienceOn
3 K. S. Sharma, S. R. Patil, and A. K. Rakshit, J. Phys. Chem. B, 108, 12804 (2004)   DOI   ScienceOn
4 K. Imanishi and Y. Einaga, J. Phys. Chem. B, 111, 62 (2007)   DOI   ScienceOn
5 P. A. Hassan, S. S. Bhagwat, and C. Manohar, Langmuir, 11, 470 (1995)
6 N. Gorski, M. Gradzielski, and H. Hoffmann, Langmuir, 10, 2594 (1994)   DOI   ScienceOn
7 M. Miyake and Y. Einaga, J. Phys. Chem. B, 111, 535 (2007)   DOI   ScienceOn
8 S. Gerber, V. M. Garamas, G. Milkereit, and V. Vill, Langmuir, 21, 6707 (2005)   DOI   ScienceOn
9 Y. C. Kim and B. H. Lee, J. Kor. Chem. Soc., 49, 435 (2005)   DOI
10 H. U. Kim, J. K. Lee, and K. H. Lim, J. Korean Ind. Eng. Chem., 16, 231 (2005)
11 R. Zana, C. Picot, and R. Duplessix, J. Colloid Interface Sci., 93, 43 (1983)   DOI   ScienceOn
12 M. Kumbhakar, T. Goel, T. Mukerjee, and H. Pal, J. Phys. Chem. B, 109, 14168 (2005)   DOI   ScienceOn
13 G. Bastiat, B. Gras, A. Khoukh, and J. Francois, Langmuir, 20, 5759 (2004)   DOI   ScienceOn
14 K. H. Lim, K. H. Kang, and M. J. Lee, J. Korean Ind. Eng. Chem., 17, 625 (2006)
15 I. J. Park and B. H. Lee, J. Kor. Chem. Soc., 50, 190 (2006)   DOI
16 E. Feitosa, N. M. Bonassi, and W. Loh, Langmuir, 22, 4512 (2006)   DOI   ScienceOn
17 I. J. Park and B. H. Lee, J. Kor. Univ. of Tech. & Edu., 12, 259 (2006)
18 Y. Muto, M. Asada, A. Takasawa, K. Esumi, and K. Meguro, J. Colloid Interface Sci., 124, 632 (1998)
19 J. Penfold, I. Tucker, R. K. Thomas, E. Staples, and R. Schuermann, J. Phys. Chem. B, 109, 10770 (2005)   DOI   ScienceOn
20 J. H. Clint, Surfactant aggregation, Chapman and Hall, New York, U.S.A., p 130 (1992)
21 P. M. Holland and D. N. Rubingh, J. Phys. Chem., 87, 1984 (1983)   DOI
22 P. C. Shanks and E. I. Franses, J. Phys. Chem., 96, 1794 (1992)