Study on the Micellization of TTAB/Brij 35 Mixed Systems in Aqueous Solutions of n-Butanol

n-부탄올 수용액에서 TTAB/Brij 35 혼합계면활성제의 미셀화에 대한 연구

  • Gil, Han-Nae (Department of Applied Chemical Engineering, Korea University of Technology & Education) ;
  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Technology & Education)
  • 길한내 (한국기술교육대학교 응용화학공학과) ;
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Received : 2007.03.13
  • Accepted : 2007.04.10
  • Published : 2007.06.10

Abstract

The critical micelle concentration (CMC) and the counterion binding constant (B) in a mixed micellar state of the trimethyltetradecylammonium bromide (TTAB) with the polyoxyethylene (23) lauryl ether (Brij 35) at $25^{\circ}C$ in water and in aqueous solutions of n-butanol (0.1 M, 0.2 M, and 0.3 M) were determined as a function of ${\alpha}_1$ (the overall mole fraction of TTAB) by the use of electric conductivity method and surface tensiometer method. Various thermodynamic parameters ($X_i$, ${\gamma}_i$, $C_i$, ${a_i}^M$, ${\beta}$, and ${\Delta}H_{mix}$) were calculated by means of the equations derived from the nonideal mixed micellar model. The effects of n-butanol on the micellization of TTAB/Brij 35 mixtures have been also studied by analyzing the measured and calculated thermodynamic parameters.

$25^{\circ}C$의 순수 물 및 n-부탄올 수용액(0.1 M, 0.2 M 및 0.3 M)에서 양이온 계면활성제인 trimethyltetradecylammonium bromide (TTAB)와 비이온 계면활성제인 polyoxyethylene (23) lauryl ether (Brij 35)의 혼합계면활성제의 임계미셀농도 (CMC)와 반대이온의 결합상수값(B)을 TTAB의 겉보기 몰분율(${\alpha}_1$)의 함수로서 전도도법과 표면장력계법으로 측정하였다. 이와 같이 측정한 CMC 값에 비이상적 혼합미셀화 모델을 적용함으로써 여러 가지 열역학적 함수값($X_i$, ${\gamma}_i$, $C_i$, ${a_i}^M$, ${\beta}$${\Delta}H_{mix}$)들을 계산하고 분석하였다. 또한 TTAB/Brij 35 혼합계면활성제의 미셀화에 미치는 n-부탄올의 농도에 따른 열역학 함수값들의 변화를 측정하고 분석하였다.

Keywords

References

  1. M. Ueno and H. Asano, Mixed Surfactant Systems, K. Ogino and M. Abe, Ed.; Marcel Dekker Inc.: New York, U. S. A., 258 (1993)
  2. J. Penfold, I. Tucker, R. K. Thomas, E. Staples, and R. Schuermann, J. Phys. Chem. B, 109, 10770 (2005) https://doi.org/10.1021/jp052426b
  3. H. U. Kim, J. K. Lee, and K. H. Lim, J. Korean Ind. Eng. Chem., 16, 231 (2005)
  4. Y. Muto, M. Asada, A. Takasawa, K. Esumi, and K. Meguro, J. Colloid Interface Sci., 124, 632 (1998)
  5. C. Treiner, M. Nortz, C. Vaution, and F. Puisieux, J. Colloid Interface Sci, 125, 261 (1988) https://doi.org/10.1016/0021-9797(88)90074-4
  6. J. H. Clint, Surfactant aggregation, Chapman and Hall, New York, U.S.A., p 130 (1992)
  7. M. Kumbhakar, T. Goel, T. Mukerjee, and H. Pal, J. Phys. Chem. B, 109, 14168 (2005) https://doi.org/10.1021/jp0520291
  8. K. S. Sharma, S. R. Patil, and A. K. Rakshit, J. Phys. Chem. B, 108, 12804 (2004) https://doi.org/10.1021/jp048294o
  9. K. Imanishi and Y. Einaga, J. Phys. Chem. B, 111, 62 (2007) https://doi.org/10.1021/jp065317l
  10. P. A. Hassan, S. S. Bhagwat, and C. Manohar, Langmuir, 11, 470 (1995)
  11. N. Gorski, M. Gradzielski, and H. Hoffmann, Langmuir, 10, 2594 (1994) https://doi.org/10.1021/la00016a005
  12. E. Feitosa, N. M. Bonassi, and W. Loh, Langmuir, 22, 4512 (2006) https://doi.org/10.1021/la052923j
  13. M. Miyake and Y. Einaga, J. Phys. Chem. B, 111, 535 (2007) https://doi.org/10.1021/jp0664465
  14. K. H. Lim, K. H. Kang, and M. J. Lee, J. Korean Ind. Eng. Chem., 17, 625 (2006)
  15. G. Bastiat, B. Gras, A. Khoukh, and J. Francois, Langmuir, 20, 5759 (2004) https://doi.org/10.1021/la049890c
  16. S. Gerber, V. M. Garamas, G. Milkereit, and V. Vill, Langmuir, 21, 6707 (2005) https://doi.org/10.1021/la050439a
  17. Y. C. Kim and B. H. Lee, J. Kor. Chem. Soc., 49, 435 (2005) https://doi.org/10.5012/jkcs.2005.49.5.435
  18. P. C. Shanks and E. I. Franses, J. Phys. Chem., 96, 1794 (1992)
  19. I. J. Park and B. H. Lee, J. Kor. Chem. Soc., 50, 190 (2006) https://doi.org/10.5012/jkcs.2006.50.3.190
  20. R. Zana, C. Picot, and R. Duplessix, J. Colloid Interface Sci., 93, 43 (1983) https://doi.org/10.1016/0021-9797(83)90382-X
  21. I. J. Park and B. H. Lee, J. Kor. Univ. of Tech. & Edu., 12, 259 (2006)
  22. P. M. Holland and D. N. Rubingh, J. Phys. Chem., 87, 1984 (1983) https://doi.org/10.1021/j100234a030