• Title/Summary/Keyword: Critical exponent

Search Result 98, Processing Time 0.023 seconds

MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION

  • Ki, Yun-Ho;Park, Kisoeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1805-1821
    • /
    • 2016
  • In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.

MULTIPLICITY OF NONTRIVIAL SOLUTIONS TO PERTURBED SCHRÖDINGER SYSTEM WITH MAGNETIC FIELDS

  • Zhang, Huixing;Liu, Wenbin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1311-1326
    • /
    • 2012
  • We are concerned with the multiplicity of semiclassical solutions of the following Schr$\ddot{o}$dinger system involving critical nonlinearity and magnetic fields $$\{-({\varepsilon}{\nabla}+iA(x))^2u+V(x)u=H_u(u,v)+K(x)|u|^{2*-2}u,\;x{\in}\mathbb{R}^N,\\-({\varepsilon}{\nabla}+iB(x))^2v+V(x)v=H_v(u,v)+K(x)|v|^{2*-2}v,\;x{\in}\mathbb{R}^N,$$ where $2^*=2N/(N-2)$ is the Sobolev critical exponent and $i$ is the imaginary unit. Under proper conditions, we prove the existence and multiplicity of the nontrivial solutions to the perturbed system.

Dielectric Constant Anomaly near the Consolute Point of a binary Mixture of MEEP and water (상전이 온도 근처에서 관찰되는 MEEP-물로 구성된 두 종류 섞임체의 유전상수 비정상성)

  • Cho, Chang-Ho;Seo, Young-Seok;Kim, Sei-Chang;Kim, Young-Baek
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 1995
  • Dielectric constant was measured near the consolute point of a binary mixture of water and Poly[bis(methoxyethoxyethoxy)phosphazene], MEEP. Dielectric constant changed incontinously at phase separation temperature plotted against the concentration to abtain coexistence curve. The critical temperatures and the critical concentration were $71^{\circ}C$, 5.5% as determined from the coexistence curve, respectivley. The critical exponent of dielectric constant, $\theta$, was 0.85. The dependence of dielectric constant on frequency is discussed in this report.

  • PDF

INFINITELY MANY SMALL SOLUTIONS FOR THE p&q-LAPLACIAN PROBLEM WITH CRITICAL SOBOLEV AND HARDY EXPONENTS

  • Liang, Sihua;Zhang, Jihui;Fan, Fan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1143-1156
    • /
    • 2010
  • In this paper, we study the following p&q-Laplacian problem with critical Sobolev and Hardy exponents {$-{\Delta}_pu-{\Delta}_qu={\mu}\frac{{\mid}u{\mid}^{p^*(s)-2}u}{{\mid}x{\mid}^s}+{\lambda}f(x,\;u)$, in $\Omega$, u=0, on $\Omega$, where ${\Omega}\;{\subset}\;\mathbb{R}^{\mathbb{N}}$ is a bounded domain and ${\Delta}_ru=div({\mid}{\nabla}u{\mid}^{r-2}{\nabla}u)$ is the r-Laplacian of u. By using the variational method and concentration-compactness principle, we obtain the existence of infinitely many small solutions for above problem which are the complement of previously known results.

Prediction of Thermal Fatigue Life of Alumina ceramics (알루미나 세라믹스의 열피로 수명 예측)

  • 정우찬;한봉석;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.871-875
    • /
    • 1999
  • Theoretical equation to calculate thermal fatigue life was derived in which slow crack growth theory was adopted. The equation is function of crack growth exponent n. Cyclic thermal fatigue tests were performed at temperature difference of 175, 187 and 200$^{\circ}C$ respectively. At each temperature difference critical thermal fatigue life cycles of the alumina ceramics were 180,37 and 7 cycles. And theoretical thermal fatigue life cycles were calculated as 172, 35 and 7 cycles at the same temperature difference conditions. Therefore thermal fatigue behavior of alumina ceramics can be represented by derived equation. Also theoretical single cycle critical thermal shock temperature difference can be calculated by this equation and the result was consistent with the experimental result well.

  • PDF

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer;Zajkani, Asghar
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.223-232
    • /
    • 2019
  • Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

Katayama Equation Modified on the Basis of Critical-Scaling Theory (임계 축척 이론을 이용한 카타야마 식의 수정)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2006
  • It is desirable to have an accurate expression on the temperature dependence of surface(or interfacial) tension ${\sigma}$, because most of the interfacial thermodynamic functions can be derived from it. There have been proposed several equations on the temperature dependence of the surface tension, ${\sigma}(T)$. Among them $E{\ddot{o}}tv{\ddot{o}}s$ equation and the one modified by Katayama, which is called Katayama equation, for improving accuracies of $E{\ddot{o}}tv{\ddot{o}}s$ equation close to critical points, have been most well-known. In this article Katayama equation is interpreted on the basis of the cell model to understand the nature of the equation. The cell model results in an expression very similar to Katayama equation. This implies that, although $E{\ddot{o}}tv{\ddot{o}}s$ and Katayama equations were obtained on the basis of experimental results, they have a sound theoretical background. The Katayama equation is also modified with the phase volume replaced with a critical scaling expression. The modified Katayama equation becomes a power-law equation with the exponent slightly different from the value obtained by critical-scaling theory. This implies that Katayama equation can be replaced by a critical-scaling equation which is proven to be accurate.

ON SEMILOCAL KLEIN-GORDON-MAXWELL EQUATIONS

  • Han, Jongmin;Sohn, Juhee;Yoo, Yeong Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1131-1145
    • /
    • 2021
  • In this article, we study the Klein-Gordon-Maxwell equations arising from a semilocal gauge field model. This model describes the interaction of two complex scalar fields and one gauge field, and generalizes the classical Klein-Gordon equation coupled with the Maxwell electrodynamics. We prove that there exist infinitely many standing wave solutions for p ∈ (2, 6) which are radially symmetric. Here, p comes from the exponent of the potential of scalar fields. We also prove the nonexistence of nontrivial solutions for the critical case p = 6.

Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • This paper investigates the effect of linear and non-linear distribution of carbon nanotube volume fraction in the FG-CNTRC beams on the critical buckling by using higher-order shear deformation theories. Here, the material properties of the CNTRC beams are assumed to be graded in the thickness direction according to a new exponential power law distribution in terms of the carbon nanotube volume fractions. The single-walled carbon nanotube is aligned and distributed in the polymeric matrix with different patterns of reinforcement; the material properties of the CNTRC beams are described by using the rule of mixture. The governing equations are derived through using Hamilton's principle. The Navier solution method is used under the specified boundary conditions for simply supported CNTRC beams. The mathematical models provided in this work are numerically validated by comparison with some available results. New results of critical buckling with the non-linear distribution of CNT volume fraction in different patterns are presented and discussed in detail, and compared with the linear distribution. Several aspects of beam types, CNT volume fraction, exponent degree (n), aspect ratio, etc., are taken into this investigation. It is revealed that the influences of non-linearity distribution in the beam play an important role to improve the mechanical properties, especially in buckling behavior. The results show that the X-Beam configuration is the strongest among all different types of CNTRC beams in supporting the buckling loads.

Prediction of Vapor Pressure of Parahydrogen from the Triple to the Critical Point (삼중점과 임계점간 파라수소의 증기압 예측)

  • Chung, Jaygwan G.
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.293-297
    • /
    • 2001
  • The existing vapor pressure measurements reported in the literature for parahydrogen between the triple point and the critical point have been employed to establish the constants and exponent of the following equation in the form of reduced vapor pressure and reduced temperature: ln $lnP_r=2.64-{\frac{2.75}{T_r}}+1.48129lnT_r+0.11T^5_r$Only the normal boiling point ($T_b$= 20.268K), the critical pressure ($P_c$= 1292.81 kPa), and the critical temperature ($T_c$= 32.976K) are necessary to calculate the vapor pressure for an overall average deviation of 0.21% for 153 experimental vapor pressure data.

  • PDF