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MULTIPLICITY OF NONTRIVIAL SOLUTIONS TO

PERTURBED SCHRÖDINGER SYSTEM

WITH MAGNETIC FIELDS

Huixing Zhang and Wenbin Liu

Abstract. We are concerned with the multiplicity of semiclassical solu-
tions of the following Schrödinger system involving critical nonlinearity
and magnetic fields
{

−(ε∇+ iA(x))2u+ V (x)u = Hu(u, v) +K(x)|u|2
∗−2u, x ∈ RN ,

−(ε∇+ iB(x))2v + V (x)v = Hv(u, v) +K(x)|v|2
∗−2v, x ∈ RN ,

where 2∗ = 2N/(N − 2) is the Sobolev critical exponent and i is the
imaginary unit. Under proper conditions, we prove the existence and
multiplicity of the nontrivial solutions to the perturbed system.

1. Introduction

This paper is motivated by some works that have appeared in recent years
concerning the nonlinear Schrödinger equation with critical nonlinearity and
magnetic fields of the form

(1.1) i~
∂ψ

∂t
= − ~2

2m
(∇+ iA(x))2ψ +W (x)ψ −K(x)|ψ|2∗−2ψ − h(x, |ψ|2)ψ,

where ~ is Planck’s constant, i is the imaginary unit, 2∗ is the critical exponent,
2∗ = 2N

N−2 , for N ≥ 3, A(x) = (A1(x), A2(x), . . . , AN (x)) : RN → RN is a real

vector potential with magnetic field B = curlA and W (x) is a scalar electric
potential. Knowledge of the solutions for the elliptic equation

(1.2) −(∇+ iA(x))2u(x) +λ(W (x)−E)u(x) = λK(x)|u|2∗−2u+λh(x, |u|2)u
has a great importance in the study of the standing-wave solutions of (1.2),
i.e., the solutions of the type

ψ(x, t) = exp(− iEt
~

)u(x),
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where λ−1 = ~
2

2m .
The transition from quantum mechanics to classical mechanics can be con-

ducted by making ~ → 0. Therefore, the existence and multiplicity of solutions
for ~ small have important physical interest.

The equation in the case A(x) ≡ 0 has been explored by many authors
including M. Del. Pino and P. Felmer [16, 17], A. Floer and A. Weinstein [14],
Y. G. Oh [14] and F. Wang [20]. For much more results, we refer the reader to
[1, 2, 8, 9, 11] and the reference therein.

As far as the equation (1.2) in the case of A(x) 6= 0 is concerned, we recall
P. L. Lions [13], G. Arioli and A. Szulkin [3], S. Cingolani [7] and the works of
[4, 6, 10, 18, 19, 21].

Among the works mentioned above, the corresponding authors have obtained
many valuable results. However, many results have only been established in
subcritical case by using various methods.

Motivated by the results just described, a natural question is whether the ex-
istence and multiplicity of results occur for the following perturbed Schrödinger
system with critical nonlinearity and magnetic fields as follows

(1.3)

{
−(ε∇+ iA(x))2u+ V (x)u = Hu(u, v) +K(x)|u|2∗−2u, x ∈ RN ,

−(ε∇+ iB(x))2v + V (x)v = Hv(u, v) +K(x)|v|2∗−2v, x ∈ RN .

To my knowledge, there seems some work on the existence of solutions to
(1.2), but to the system (1.3), there is few work on the existence and multiplicity
of solutions.

By using the similar ideas of [12, 22], we will establish the two main results
to (1.3).

Firstly, we make the following assumptions throughout the paper.
(V0) V ∈ C(RN ,R), V (0) = infx∈RN V (x) = 0 and there is a constant b > 0

such that the set νb = {x ∈ RN : V (x) < b} has finite Lebesgue measure;
(A0) A(x), B(x) ∈ C(RN ,RN), A(0) = B(0) = 0;
(K0) K(x) ∈ C(RN ), 0 < infK ≤ supK <∞;
(H1) H ∈ C1(R+ ×R+,R), Hs(s, t) = o(|s|+ |t|) and Ht(s, t) = o(|s|+ |t|);
(H2) lim|s|+|t|→∞

Hs(s,t)+Ht(s,t)
|s|α+|t|β = 0 for some 2 < α, β < 2⋆ − 1;

(H3) There exist a0 > 0, p, q > 2, θ ∈ (2, 2⋆) such that H(s, t) ≥ a0(|s|p +
|t|q) and 0 < θH(s, t) ≤ sHs(s, t) + tHt(s, t) for all s > 0, t > 0.

Next, we show the two main results.

Theorem 1. Assume that (V0), (A0), (K0), (H1)-(H3) hold. Then, for any

σ > 0, there exists εσ > 0, such that ε ≤ εσ, the perturbed Schrödinger system

(1.3) has one least energy solution (uε, vε) satisfying

(1.4)
θ − 2

2θ

∫

RN

ε2(|∇|uε||2 + |∇|vε||2) + V (x)(|uε|2 + |vε|2) ≤ σεN .

Theorem 2. Let (V0), (A0), (K0) and (H1)-(H3) be satisfied. Moreover, as-

sume that H(u, v) is even in (u, v), then, for any m ∈ N and σ > 0, there is
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Λmσ > 0, such that the system (1.3) has at least m pairs of solutions (uε, vε)
which satisfy the estimate (1.4) whenever λ ≥ Λmσ.

The two results above mentioned are complement for the ones in [12]. Ob-
serve that though the method used in this paper is similar to the one of [12],
the procedure of the main results is not trivial. We must face our problem
with complex-valued functions, at the same time, we need much more delicate
estimates for the appearance of magnetic potentials A(x) and B(x).

This paper is organized as follows. In Section 2, we describe some pre-
liminaries. Section 3 contains the behavior of (PS) sequences and technical
Lemmas. Section 4 includes the proofs of the main results.

2. Preliminaries

Let λ = ε−2, we think about the following equivalent system
(2.1){

−(∇+ i
√
λA(x))2u+ λV (x)u = λHu(u, v) + λK(x)|u|2∗−2u, x ∈ RN ,

−(∇+ i
√
λB(x))2v + λV (x)v = λHv(u, v) + λK(x)|v|2∗−2v, x ∈ RN .

In order to prove Theorem 1, we need only prove the following result.

Theorem 3. Assume that (V0), (A0), (K0), (H1)-(H3) hold. Then, for σ > 0,
there exists Λσ > 0 such that if λ ≥ Λσ, the system (2.1) has at least one least

energy solution (uλ, vλ) which satisfies

θ − 2

2θ

∫

RN

(|∇|uλ||2 + |∇|vλ||2 + λV (x)(|uλ|2 + |vλ|2) ≤ σλ1−
N
2 .

Similarly, if we can prove the multiplicity of nontrivial solutions to (2.1),
Theorem 2 will be obtained.

For the convenience, we quote the necessary notations.
Let ∇Au = (∇+ i

√
λA)u, ∇Bv = (∇+ i

√
λB)v, Eλ,A(RN ) = {u ∈ L2(RN ) :

∇Au ∈ L2(RN )} and Eλ,B(RN ) = {v ∈ L2(RN ) : ∇Bv ∈ L2(RN )}. It is
obvious that Eλ,A is the Hilbert subspace under the scalar product

(u, v)λ,A = Re

∫

RN

((∇Au,∇Av) + λV (x)uv),

the norm induced by the product (·, ·) is

‖u‖2λ,A =

∫

RN

(|∇Au|2 + λV (x)|u|2).

It is easily known that Eλ,A is the closure of C∞
0 (RN ,C). For Eλ,B, there exists

the similar results to Eλ,A .

Remark 2.1. We have the following diamagnetic inequality (see [13]):

|∇Au(x)| ≥ |∇|u(x)||, u ∈ Eλ,A(R
N ),

|∇Bv(x)| ≥ |∇|v(x)||, v ∈ Eλ,B(R
N ).
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Indeed, since A, B is real-valued, we have

|∇|u(x)|| = |Re(∇u ū
|u|)| = |Re(∇u + i

√
λAu) ū

|u| | ≤ |∇u+ i
√
λAu| = |∇Au(x)|

and

|∇|v(x)|| = |Re(∇v v̄
|v|)| = |Re(∇v + i

√
λBv) v̄

|v| | ≤ |∇v + i
√
λBv| = |∇Bv(x)|

(the bar denotes complex conjugation). These facts mean if u ∈ Eλ,A(RN ),
v ∈ Eλ,B(RN ), then |u|, |v| ∈ H1(RN ) and therefore u, v ∈ Lp(RN ) for any
p ∈ [2, 2∗), i.e., if un ⇀ u in Eλ,A (vn ⇀ v in Eλ,B), then un → u in Lp

loc(R
N )

for any p ∈ [2, 2∗) (vn → v in Lp
loc(R

N )) and un → u a.e. in RN (vn → v a.e. in
RN ).

Remark 2.2. In general, Eλ,A(RN ) * H1(RN ) and H1(RN ) * Eλ,A(RN ).
However, it is proved by Szulkin that if Ω is a bounded domain with reg-
ular boundary, then, the spaces Eλ,A(Ω) and H1(Ω) are equivalent, where
Eλ,A(Ω) = {u ∈ L2(Ω) : ∇Au ∈ L2(Ω)} with the norm

‖u‖2Eλ,A(Ω) =

∫

Ω

(|∇Au|2 + |u|2).

From Remark 2.1, for each s ∈ [2, 2∗), there is cs > 0 (independent of λ) such
that, if λ > 1, we have

(∫

RN

|u|s
) 1

s

≤ cs

(∫

RN

|∇|u||2
) 1

2

≤ cs

(∫

RN

|∇Au|2
) 1

2

≤ cs‖u‖Eλ,A
.

Set Eλ = Eλ,A × Eλ,B and ‖(u, v)‖2λ = ‖u‖2λ,A + ‖v‖2λ,B for (u, v) ∈ Eλ. The

energy functional associated with (2.1) is defined by

Jλ(u, v) =
1

2

∫

RN

(|∇u + i
√
λAu|2 + |∇v + i

√
λBv|2

+ λV (x)(|u|2 + |v|2))− λ

∫

RN

G(x, u, v)

=
1

2
‖(u, v)‖2λ − λ

∫

RN

G(x, u, v) for (u, v) ∈ Eλ,

where G(x, u, v) = K(x)
2∗ (|u|2∗ + |v|2∗) +H(u, v).

Under the assumptions of Theorem 1, standard arguments [22] indicate that
Jλ ∈ C1(Eλ,R) and the critical points of Jλ are weak solutions of (2.1).

Moreover, for convenience, let us recall the definition and some properties
of the Krasnoselski genus [5].

The concept of the index theory is most easily explained for an even func-
tional E on some Banach space X with symmetry group G = Z2 = {id,−id}.

Define

A = {A ∈ X | A is closed and A = −A}
to be the class of closed symmetric subsets of X .
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Definition 2.1. For A ∈ A, define the Krasnoselskii genus of A, denoted by
i(A), as

i(A) =





0, A = φ,
inf{m; ∃h ∈ C0(A,Rm/{0}), h(−u) = −h(u)},
∞, if {m; ∃h ∈ C0(A,Rm/{0}), h(−u) = −h(u)} = φ.

It is easy to see that i(A) = ∞, if 0 ∈ A.
Moreover, the Krasnoselskii genus has the following properties.

Lemma 2.1. (1) i(A) ≥ 0, i(A) = 0 ⇐⇒ A = ∅;
(2) (Normalization) i(A) = 1 if A contains only a pair symmetric points;
(3) (Monotonicity) For any A,B ∈ A, if A ⊏ B, then i(A) ≤ i(B);
(4) (Subadditivity) i(A ∪B) ≤ i(A) + i(B), ∀A,B ∈ A;
(5) (Super-variant) For any continuous odd map ϕ : X → X and set A ∈ A,

there holds i(A) ≤ i(ϕA);
(6) (Continuity) For any A ∈ A, if A is compact, there exists a symmetric

neighborhood N of A such that i(N̄) = i(A); Furthermore, if A is compact and

0 ∈ A, then i(A) <∞;
(7) Suppose X1 is a m-dimensional subspace of X and S is the surface of

unit ball in X, then i(X1 ∩ S) = m;
(8) Suppose X = X1 ⊕ X2, dimX1 = m, if A,B ∈ A and i(A) > m, then

A ∩X2 6= ∅.

3. Technical lemmas

We call a sequence {(un, vn)} ⊂ Eλ is a (PS)c sequence, if

Jλ(un, vn) → c, J
′

λ(un, vn) → 0 in E−1
λ .

Jλ is said to satisfy the (PS)c condition, if any (PS)c sequence contains a
convergent subsequence.

Similar to the proof of Lemma 3.1 in [12], the following result can be ob-
tained.

Lemma 3.1. Assume that the assumptions of Theorem 3 hold and {(un, vn)}
is a (PS)c sequence for Jλ. Then, c ≥ 0 and {(un, vn)} is bounded in Eλ.

Proof. By (H3), we have

Jλ(un, vn)−
1

θ
J

′

λ(un, vn)(un, vn)

= (
1

2
− 1

θ
)‖(un, vn)‖2λ + (

1

θ
− 1

2∗
)λ

∫

RN

K(x)(|un|2
∗

+ |vn|2
∗

)

+ λ

∫

RN

(
1

θ
(unHu(un, vn) + vnHv(un, vn))−H(un, vn))

≥ (
1

2
− 1

θ
)‖(un, vn)‖2λ ≥ 0.

So {(un, vn)} is bounded in Eλ and c ≥ 0. The proof is completed. �
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By Lemma 3.1, (PS)c sequence {(un, vn)} is bounded in Eλ. So we can
assume (un, vn) ⇀ (u, v) in Eλ. By Remark 2.1, passing to a subsequence,
un → u, vn → v in Lp

loc(R
N ) for any p ∈ [2, 2∗) and un → u, vn → v a.e. in

RN . It is standard that (u, v) is a critical point of Jλ, namely a weak solution
of (2.1).

Lemma 3.2. Let s ∈ [2, 2∗). Then there is a subsequence {(unj
, vnj

)} such

that for any ε > 0, there exists rε > 0 with

lim sup
i→∞

∫

Bi\Br

|uni
|s + |vni

|s ≤ ǫ for all r ≥ rǫ,

where Br := {x ∈ RN : |x| ≤ r}.
Proof. From un → u and vn → v in Ls

loc(R
N ), we have

∫

Bi

|un|s + |vn|s →
∫

Bi

|u|s + |v|s as n→ ∞.

Thus, there exists ñi ∈ N such that∫

Bi

(|unj
|s − |u|s) + (|vnj

|s − |v|s) < 1

i
for all nj = ñi + j, j = 1, 2, . . . .

Let ñi+1 ≥ ñi and for ni = ñi + i, we have
∫

Bi

(|uni
|s − |u|s) + (|vni

|s − |v|s) < 1

i
for all ni = ñi + i, i = 1, 2, . . . .

Observe that there exists rǫ > 0 satisfying∫

RN\Br

|u|s + |v|s < ε

3
for all r ≥ rε.

Therefore,
∫

Bi\Br

|uni
|s + |vni

|s =
∫

Bi

|uni
|s − |u|s +

∫

Bi\Br

|u|s +
∫

Br

|u|s − |uni
|s

≤ 1

i
+

∫

RN\Br

|u|s +
∫

Br

|u|s − |uni
|s

≤ ε as i→ ∞.

The proof is completed. �

Let η ∈ C∞(R+) which satisfy 0 ≤ η(t) ≤ 1, t ≥ 0. η(t) = 1, if t ≤ 1 and
η(t) = 0, if t ≥ 2. Define ũj(x) = η(2|x|/j)u(x), ṽj(x) = η(2|x|/j)v(x), then
ũj → u in E1,A and ṽj → v in E1,B.

Lemma 3.3.

lim
j→∞

∣∣∣∣
∫

RN

(
Hu(unj

, vnj
)−Hu(unj

− ũj, vnj
− ṽj)−Hu(ũj , ṽj)

)
ϕ

∣∣∣∣ = 0,(3.1)

lim
j→∞

∣∣∣∣
∫

RN

(
Hv(unj

, vnj
)−Hv(unj

− ũj, vnj
− ṽj)−Hv(ũj, ṽj)

)
ψ

∣∣∣∣ = 0(3.2)
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uniformly in (ϕ, ψ) ∈ E1 with ‖(ϕ, ψ)‖E1
≤ 1.

Proof. Note that ũj → u in E1,A and uj ⇀ u in E1,A, the local compactness
of Sobolev embedding implies that, for any r > 0,

lim
j→∞

∣∣∣∣
∫

Br

(
Hu(unj

, vnj
)−Hu(unj

− ũj , vnj
− ṽj)−Hu(ũj , ṽj)

)
ϕ

∣∣∣∣ = 0

uniformly in ‖ϕ‖1,A ≤ 1. For any ε > 0, there exists rε > 0 such that

lim sup
i→∞

∫

Bi\Br

|ũi|s ≤
∫

RN\Br

|u|s ≤ ε for all r ≥ rε.

It follows from Lemma 3.2 (for s = 2, α+ 1, β + 1) that

lim
j→∞

∣∣∣∣
∫

RN

(
Hu(unj

, vnj
)−Hu(unj

− ũj , vnj
− ṽj)−Hu(ũj , ṽj)

)
ϕ

∣∣∣∣

= lim
j→∞

∣∣∣∣∣

∫

Bj\Br

(
Hu(unj

, vnj
)−Hu(unj

− ũj, vnj
− ṽj)−Hu(ũj, ṽj)

)
ϕ

∣∣∣∣∣

≤ c1 lim sup
j→∞

∫

Bj\Br

(|unj
|+ |vnj

|+ |ũj|+ |ṽj |)|ϕ|

+ c2 lim sup
j→∞

∫

Bj\Br

(|unj
|α + |vnj

|β + |ũj |α + |ṽj |β)|ϕ|

≤ c1 lim sup
j→∞

(‖unj
‖L2(Bj\Br) + ‖vnj

‖L2(Bj\Br)

+ ‖ũj‖L2(Bj\Br) + ‖ṽj‖L2(Bj\Br))‖ϕ‖L2

+ c2

(
lim sup
j→∞

(‖unj
‖αLα+1(Bj\Br)

+ ‖ũj‖αLα+1(Bj\Br)
)‖ϕ‖Lα+1

+ lim sup
j→∞

(‖vnj
‖β
Lβ+1(Bj\Br)

+ ‖ṽj‖βLβ+1(Bj\Br)
)‖ϕ‖Lβ+1

)

≤ c3ε
1
2 + c4ε

α
α+1 + c5ε

β
β+1 ,

which implies the conclusion is correct. Similarly, we have that

lim
j→∞

∣∣∣∣
∫

RN

(
Hv(unj

, vnj
)−Hv(unj

− ũj , vnj
− ṽj)−Hv(ũj , ṽj)

)
ψ

∣∣∣∣ = 0.

The proof is completed. �

Lemma 3.4. One has along a subsequence

Jλ(un − ũn, vn − ṽn) → c− Jλ(u, v),

J ′
λ(un − ũn, vn − ṽn) → 0 in E−1

λ .

Proof. Since ũj → u in E1,A, ṽj → v in E1,B and (uj , vj) ⇀ (u, v) in Eλ, one
has

Jλ(un − ũn, vn − ṽn)
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= Jλ(un, vn)− Jλ(ũn, ṽn)

+
λ

2∗

∫

RN

K(x)(|un|2
∗ − |un − ũn|2

∗ − |ũn|2
∗

)

+
λ

2∗

∫

RN

K(x)(|vn|2
∗ − |vn − ṽn|2

∗ − |ṽn|2
∗

)

+ λ

∫

RN

H(un, vn)−H(un − vn, ũn − ṽn)−H(ũn, ṽn) + o(1).

Along the lines in proving the Brezis-Lieb lemma, it is easy to check that

lim
n→∞

∫

RN

K(x)(|un|2
∗ − |un − ũn|2

∗ − |ũn|2
∗

) = 0,

lim
n→∞

∫

RN

K(x)(|vn|2
∗ − |vn − ũn|2

∗ − |ṽn|2
∗

) = 0

and

lim
n→∞

∫

RN

H(un, vn)−H(un − vn, ũn − ṽn)−H(ũn, ṽn) = 0.

Note that Jλ(un, vn) → c and Jλ(ũn, ṽn) → Jλ(u, v), we get

Jλ(un − ũn, vn − ṽn) → c− Jλ(u, v).

For any (ϕ, ψ) ∈ Eλ, we have

J ′
λ(un − ũn, vn − ṽn)(ϕ, ψ)

= J ′
λ(un, vn)(ϕ, ψ) − J ′

λ(ũn, ṽn)(ϕ, ψ)

+ λ

∫

RN

K(x)(|un|2
∗−2un − |un − ũn|2

∗−2(un − ũn)− |ũn|2
∗−2ũn)ϕ

+ λ

∫

RN

K(x)(|vn|2
∗−2vn − |vn − ṽn|2

∗−2(vn − ṽn)− |ṽn|2
∗−2ṽn)ψ

+ λ

∫

RN

(Hu(un, vn)−Hu(un − ũn, vn − ṽn)−Hu(ũn, ṽn))ϕ

+ λ

∫

RN

(Hv(un, vn)−Hv(un − ũn, vn − ṽn)−Hv(ũn, ṽn))ψ.

It is standard to check that

lim
n→∞

∫

RN

K(x)(|un|2
∗−2un − |un − ũn|2

∗−2(un − ũn)− |ũn|2
∗−2ũn)ϕ = 0

and

lim
n→∞

∫

RN

K(x)(|vn|2
∗−2vn − |vn − ṽn|2

∗−2(vn − ṽn)− |ṽn|2
∗−2ṽn)ψ = 0

uniformly in ‖(ϕ, ψ)‖λ ≤ 1. Therefore, the conclusion required holds by Lemma
3.3. The proof is completed. �
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Let u1n = un − ũn, v
1
n = vn − ṽn, then un − u = u1n + (ũn − u), vn − v =

v1n + (ṽn − v). So (un, vn) → (u, v) in Eλ if and only if (u1n, v
1
n) → (0, 0) in Eλ.

Note that

Jλ(u
1
n, v

1
n)−

1

2
J

′

λ(u
1
n, v

1
n)(u

1
n, v

1
n)

= (
1

2
− 1

2∗
)λ

∫

RN

K(x)(|u1n|2
∗

+ |v1n|2
∗

)

+ λ

∫

RN

(
1

2
(u1nHu(u

1
n, v

1
n) + v1nHv(u

1
n, v

1
n))−H(u1n, v

1
n))

≥ λ

N
Kmin

∫

RN

(|u1n|2
∗

+ |v1n|2
∗

),

where Kmin = infx∈RN K(x) > 0. Hence by Lemma 3.4, we get

(3.3) ‖u1n‖2
∗

2∗ + ‖v1n‖2
∗

2∗ ≤ N(c− Jλ(u, v))

λKmin
+ o(1).

Now, we determine the energy level of the functional Jλ below which the (PS)
condition holds.

Let Vb(x) = max{V (x), b}, where b is the positive constant in the assumption
(V0). Since the set νb has finite measure and u1n, v

1
n → 0 in L2

loc(R
N ), we have

∫

RN

V (x)(|u1n|2 + |v1n|2) =
∫

RN

Vb(x)(|u1n|2 + |v1n|2) + o(1).

By (H2) and (H3), there exists Cb > 0 such that
∫

RN

K(x)(|u|2∗ + |v|2∗) + uHu(u, v) + vHv(u, v)

≤ b(‖u‖22 + ‖v‖22) + Cb(‖u‖2
∗

2∗ + ‖v‖2∗2∗).
Let S be the best Sobolev constant satisfying

S‖u‖22∗ ≤
∫

RN

|∇u|2 for all u ∈ H1(RN ).

Lemma 3.5. Under the assumptions of Theorem 3, there is a constant α0 > 0
(independent of λ) such that, for any (PS)c sequence {(un, vn)} ⊂ Eλ for Jλ
with (un, vn)⇀ (u, v), either (un, vn) → (u, v) or c− Jλ(u, v) ≥ α0λ

1−N
2 .

Proof. Assume that (un, vn) 9 (u, v), we have

lim inf
n→∞

‖(u1n, v1n)‖λ > 0 and c− Jλ(u, v) > 0.

By the Sobolev inequality, we obtain

S(‖u1n‖22∗ + ‖v1n‖22∗)

≤
∫

RN

(|∇|u1n||2 + |∇|v1n||2 + λV (x)(|u1n|2 + |v1n|2))−
∫

RN

λV (x)(|u1n|2 + |v1n|2)

≤
∫

RN

|∇u1n + iAu1n|2 + |∇v1n + iBv1n|2 + λV (x)(|u1n|2 + |v1n|2)
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−
∫

RN

λV (x)(|u1n|2 + |v1n|2)

= λ

∫

RN

K(x)(|u1n|2
∗

+ |v1n|2
∗

) + u1nHu(u
1
n, v

1
n) + v1nHv(u

1
n, v

1
n)

−
∫

RN

λVb(x)(|u1n|2 + |v1n|2) + o(1)

≤ λb(‖u1n‖22 + ‖v1n‖22) + Cbλ(‖u1n‖2
∗

2∗ + ‖v1n‖2
∗

2∗)− λb(‖u1n‖22 + ‖v1n‖22) + o(1)

= λCb(‖u1n‖2
∗

2∗ + ‖v1n‖2
∗

2∗) + o(1).

Meanwhile, it is easy to show that

lim inf
n→∞

‖u1n‖2
∗

2∗ + ‖v1n‖2
∗

2∗ > 0.

Thus, by (3.3), we get

S ≤ λCb(‖u1n‖2
∗

2∗ + ‖v1n‖2
∗

2∗)
2∗−2

2∗ + o(1)

≤ λCb(
N(c− Jλ(u, v))

λKmin
)

2
N + o(1)

= λ1−
2
N Cb(

N

Kmin
)

2
N (c− Jλ(u, v))

2
N + o(1).

Therefore, α0λ
1−N

2 ≤ c− Jλ(u, v) + o(1), where α0 = S
N
2 C

−N
2

b N−1Kmin. The
proof is completed. �

Since H1(RN ) →֒ L2∗(RN ) is not compact, Jλ does not satisfy the (PS)c
condition for all c > 0. But Lemma 3.5 implies that Jλ satisfies the following
local (PS)c condition.

Lemma 3.6. Under the assumptions of Theorem 3, there is a constant α0 > 0
(independent of λ) such that, if a sequence {(un, vn)} ⊂ Eλ satisfies

Jλ(un, vn) → c < α0λ
1−N

2 and J
′

λ(un, vn) → 0 in E−1
λ ,

then, {(un, vn)} is relatively compact in Eλ.

Next, we consider λ ≥ 1. By the assumptions of Theorem 3, we can see that
Jλ has the mountain-pass structure.

Lemma 3.7. Under the assumptions of Theorem 3, there exist αλ, ρλ > 0 such

that

Jλ(u, v) > 0, 0 < ‖(u, v)‖λ < ρλ; Jλ(u, v) ≥ αλ, if ‖(u, v)‖λ = ρλ.

Proof. By (H1)-(H3), for δ ≤ (4λC2)
−1, there exists Cδ such that

∫

RN

G(x, u, v) ≤ δ(‖u‖22 + ‖v‖22) + Cδ(‖u‖2
∗

2∗ + ‖v‖2∗2∗).

Thus

Jλ(u, v) ≥
1

2
‖(u, v)‖2λ − λδ(‖u‖22 + ‖v‖22)− λCδ(‖u‖2

∗

2∗ + ‖v‖2∗2∗).
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Observe that ‖u‖22 + ‖v‖22 ≤ C2‖(u, v)‖2λ, we have

Jλ(u, v) ≥
1

4
‖(u, v)‖2λ − λCδ(‖u‖2

∗

2∗ + ‖v‖2∗2∗),

which implies that the conclusions required hold. The proof is completed. �

Lemma 3.8. Under the assumptions of Theorem 3, for any finite dimensional

subspace F ⊂ Eλ, we get

Jλ(u, v) → −∞ as (u, v) ∈ F, ‖(u, v)‖λ → ∞.

Proof. By the assumptions of Theorem 3, one has

Jλ(u, v) ≤
1

2
‖(u, v)‖2λ − λa0(|u|pp + |v|qq) for all (u, v) ∈ Eλ.

Since all norms in a finite dimensional space are equivalent and p, q > 2, we
easily obtain the desired conclusion. �

Define the functional

Φλ(u, v) =
1

2

∫

RN

(|∇u+ i
√
λAu|2 + |∇v + i

√
λBv|2

+ λV (x)(|u|2 + |v|2))− a0λ

∫

RN

|u|p + |v|q.

It is obvious that Φλ ∈ C1(Eλ) and Jλ(u, v) ≤ Φλ(u, v), (u, v) ∈ Eλ.
Note that

inf

{∫

RN

|∇φ|2 : φ ∈ C∞
0 (RN ,R), ‖φ‖p = 1

}
= 0

and

inf

{∫

RN

|∇ψ|2 : φ ∈ C∞
0 (RN ,R), ‖ψ‖q = 1

}
= 0.

For any δ > 0, there exist φδ, ψδ ∈ C∞
0 (RN ,R), with ‖φδ‖p = ‖ψδ‖q = 1, and

suppφδ, suppψδ ⊂ Brδ (0) such that ‖∇φδ‖22, ‖∇ψδ‖22 < δ.

Let eλ(x) = (φδ(
√
λx), ψδ(

√
λx)), then, suppeλ ⊂ B

λ
−

1
2 rδ

(0).

For t ≥ 0, we have

Φλ(teλ) =
t2

2
‖eλ‖2λ − a0λt

p

∫

RN

|φδ(
√
λx)|p − a0λt

q

∫

RN

|ψδ(
√
λx)|q

= λ1−
N
2 Iλ(tφδ, tψδ),

where

Iλ(u, v) =
1

2

∫

RN

(|∇Au|2 + |∇Av|2 + (|A(λ− 1
2 x)|2 + V (λ−

1
2x))(|u|2 + |v|2))

− a0

∫

RN

(|u|p + |v|q).
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Obviously, we get

max
t≥0

Iλ(tφδ, tψδ)

≤ p− 2

2p(pa0)
2

p−2

{∫

RN

|∇Aφδ|2 + (|A(λ− 1
2x)|2 + V (λ−

1
2x))|φδ |2

}

+
q − 2

2q(qa0)
2

q−2

{∫

RN

|∇Aψδ|2 + (|A(λ− 1
2x)|2 + V (λ−

1
2x))|ψδ |2

}
.

Recall that A(0) = 0, B(0) = 0, V (0) = 0, suppφδ, suppψδ ⊂ Brδ(0). There-
fore, there exists Λδ > 0 such that, for all λ ≥ Λσ, we get

(3.4) max
t≥0

Jλ(tφδ, tψδ) ≤
(

p− 2

2p(pa0)
2

p−2

(5δ)
p

p−2 +
q − 2

2q(qa0)
2

q−2

(5δ)
q

q−2

)
λ1−

N
2 .

Lemma 3.9. Under the assumptions of Theorem 3, for any σ > 0, there exists

Λσ > 0 such that for each λ ≥ Λσ, there is eλ ∈ Eλ with ‖eλ‖λ > ρλ, Jλ(eλ) ≤
0 and

max
t≥0

Jλ(teλ) ≤ σλ1−
N
2 ,

where ρλ is defined form Lemma 3.7.

Proof. This proof is similar to Lemma 4.3 in [12], it can be easily obtained. �

For anym ∈ N , we can choosem functions φiδ ∈ C∞
0 (RN ) such that suppφiδ∩

suppφjδ = ∅, i 6= j, ‖φiδ‖p = 1 and ‖∇φiδ‖22 < δ. Similarly, one can also get

m functions ψi
δ ∈ C∞

0 (RN ) with suppψi
δ ∩ suppψj

δ = ∅, i 6= j, ‖ψi
δ‖q = 1

and ‖∇ψi
δ‖22 < δ. Let rmδ > 0 be such that supp(φiδ, ψ

i
δ) ⊂ Bi

rm
δ
(0) for i =

1, 2, . . . ,m.
Set eiλ(x) = (φiδ(

√
λx), ψi

δ(
√
λx)) = (f i

λ, g
i
λ), i = 1, 2, . . . ,m, then, suppeiλ(x)

⊂ B
λ
−

1
2 rm

δ

(0).

Let Fm
λδ = span{e1λ, e2λ, . . . , emλ }. For each

(u, v) =

m∑

i=1

kie
i
λ ∈ Fm

λδ,

we get
∫

RN

(|∇Au|2 + |∇Bv|2) =
m∑

i=1

|ki|2(
∫

RN

|∇Af
i
λ|2 +

∫

RN

|∇Bg
i
λ|2),

∫

RN

V (x)(|u|2 + |v|2) =
m∑

i=1

|ki|2(
∫

RN

V (x)|f i
λ|2 +

∫

RN

V (x)|giλ|2),

1

2∗

∫

RN

K(x)(|u|2∗ + |v|2∗) = 1

2∗

m∑

i=1

|ki|2
∗

(

∫

RN

K(x)|f i
λ|2

∗

+

∫

RN

K(x)|giλ|2
∗

)
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and ∫

RN

H(u, v) =
m∑

i=1

∫

RN

H(kif
i
λ, kig

i
λ).

Therefore

Jλ(u, v) =

m∑

i=1

Jλ(kie
i
λ)

and
Jλ(kie

i
λ) ≤ φλ(kie

i
λ).

Set βδ := max{‖(φiδ, ψi
δ)‖22 : i = 1, 2, . . . ,m} and choose some Amδ > 0 such

that

V (λ
−1

2 x) ≤ δ

βδ
for all |x| ≤ rmδ and λ ≥ Λmδ.

Similar to the proof mentioned above, we can acquire the following inequality

(3.5) max
(u,v)∈Fm

λδ

Jλ(u, v) ≤
(

m(p− 2)

2p(pa0)
2

p−2

(5δ)
p

p−2 +
m(q − 2)

2q(qa0)
2

q−2

(5δ)
q

q−2

)
λ

2−N
2 .

By using the estimate, we can get the following result.

Lemma 3.10. Under the assumptions of Lemma 3.7, for any m ∈ N and

σ > 0, there exists Λmσ > 0 such that for each λ ≥ Λmδ, there exists a m-

dimensional subspace F satisfying

max
(u,v)∈F

Jλ(u, v) ≤ σλ
2−N

2 .

Proof. Choose σ > 0 so small that
(

m(p− 2)

2p(pa0)
2

p−2

(5δ)
p

p−2 +
m(q − 2)

2q(qa0)
2

q−2

(5δ)
q

q−2

)
≤ σ

and take F = Fm
λδ. By (3.5), we get the conclusion as required. �

4. Proof of the main results

Proof of Theorem 1. By Lemma 3.9, for any 0 < σ < α0, there exists Λσ > 0,

such that for each λ ≥ Λσ, we have cλ ≤ σλ1−
N
2 , where

cλ = inf
γ∈Γλ

max
t≥0

Jλ(γ(t)),

Γλ = {γ ∈ C([0, 1], Eλ) : γ(0) = 0, γ(1) = eλ} .
In virtue of Lemma 3.5, Jλ satisfies the (PS)cλ condition. Hence, by the

mountain pass theorem, there exists (uλ, vλ) ∈ Eλ satisfying J
′

λ(uλ, vλ) =
0 and Jλ(uλ, vλ) = cλ. Therefore, (uλ, vλ) is a weak solution of (2.1). Moreover,
it is well known that (uλ, vλ) is a least energy solution of (2.1).

Note that Jλ(uλ, vλ) ≤ σλ1−
N
2 , J

′

λ(uλ, vλ) = 0 and

Jλ(uλ, vλ) = Jλ(uλ, vλ)−
1

θ
J

′

λ(uλ, vλ)(uλ, vλ)
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= (
1

2
− 1

θ
)‖(uλ, vλ)‖2λ + (

1

θ
− 1

2∗
)λ

∫

RN

K(x)(|uλ|2
∗

+ |vλ|2
∗

)

+ λ

∫

RN

(
1

θ
(uλHu(uλ, vλ) + vλHv(uλ, vλ))−H(uλ, vλ))

≥ (
1

2
− 1

θ
)‖(uλ, vλ)‖2λ.

So, the diamagnetic inequality implies that

θ − 2

2θ

∫

RN

(|∇|uλ||2 + |∇|vλ||2 + λV (x)(|uλ|2 + |vλ|2)) ≤ σλ1−
N
2 .

The proof is completed. �

Proof of Theorem 2. By Lemma 3.10, for any m ∈ N and σ ∈ (0, α0), there
exists Λmσ such that for λ ≥ Λmσ, we can choose a m-dimensional subspace

F with maxΦλ(F ) ≤ σλ1−
N
2 . By Lemma 3.8, there is R > 0 (depending on λ

and m) such that Φλ(u) ≤ 0 for all u ∈ F |BR.
Denote the set of all symmetric (in the sense that −Ω = Ω) and closed

subsets of Eλ by Σ. For each Ω ∈ Σ, let gen(Ω) be the Krasnoselski genus and
set

i(A) := min
h∈Γm

(h(Ω) ∩ ∂Bρλ
),

where Γm is the set of all odd homeomorphisms h ∈ C(Eλ, Eλ) and ρλ is the
number of Lemma 3.7. Then i is a version of Benci’s pseudoindex [5]. Let

cλj
= inf

i(Ω)≥j
sup
u∈Ω

Jλ(u), 1 ≤ j ≤ m.

Since Jλ(u) ≥ αλ for all u ∈ ∂Bρλ
(see Lemma 3.7) and i(F ) = dimF = m,

we have

αλ ≤ cλ1
≤ cλ2

≤ · · · ≤ cλm
≤ sup

(u,v)∈Fm
λσ

Jλ(u, v) ≤ σλ1−
N
2 .

In connection with Lemma 3.6, we know that Jλ satisfies the (PS)cλj
condition

at all levels cλj
. By the critical point theory, all cλj

are critical levels and Jλ
has at least m pairs of non-trivial critical points. Finally, as in the proof of
Theorem 1, we easily get these solutions are the least energy solutions. �
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