Acknowledgement
Jongmin Han was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2018R1D1A1B07042681).
References
- A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
- A. Azzollini, L. Pisani, and A. Pomponio, Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), no. 3, 449-463. https://doi.org/10.1017/S03082105090018
- A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations, Topol. Methods Nonlinear Anal. 35 (2010), no. 1, 33-42.
- V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14 (2002), no. 4, 409-420. https://doi.org/10.1142/S0129055X02001168
- P. C. Carriao, P. L. Cunha, and O. H. Miyagaki, Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents, Commun. Pure Appl. Anal. 10 (2011), no. 2, 709-718. https://doi.org/10.3934/cpaa.2011.10.709
- P. C. Carriao, P. L. Cunha, and O. H. Miyagaki, Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials, Nonlinear Anal. 75 (2012), no. 10, 4068-4078. https://doi.org/10.1016/j.na.2012.02.023
- D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal. 58 (2004), no. 7-8, 733-747. https://doi.org/10.1016/j.na.2003.05.001
- G. Che and H. Chen, Existence and multiplicity of nontrivial solutions for Klein-Gordon-Maxwell system with a parameter, J. Korean Math. Soc. 54 (2017), no. 3, 1015-1030. https://doi.org/10.4134/JKMS.j160344
- S.-J. Chen and S.-Z. Song, Multiple solutions for nonhomogeneous Klein-GordonMaxwell equations on R3, Nonlinear Anal. Real World Appl. 22 (2015), 259-271. https://doi.org/10.1016/j.nonrwa.2014.09.006
- S. Chen and X. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete Contin. Dyn. Syst. 38 (2018), no. 5, 2333-2348. https://doi.org/10.3934/dcds.2018096
- T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 5, 893-906. https://doi.org/10.1017/S030821050000353X
- T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud. 4 (2004), no. 3, 307-322. https://doi.org/10.1515/ans-2004-0305
- G. W. Gibbons, M. E. Ortiz, F. Ruiz Ruiz, and T. M. Samols, Semi-local strings and monopoles, Nuclear Phys. B 385 (1992), no. 1-2, 127-144. https://doi.org/10.1016/0550-3213(92)90097-U
- C. T. Hill, A. L. Kagan, and L. M. Widrow, Are cosmic strings frustrated?, Phys. Rev. D 38 (1988), 1100-1107. https://doi.org/10.1103/PhysRevD.38.1100
- W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162. http://projecteuclid.org/euclid.cmp/1103900983 https://doi.org/10.1007/BF01626517
- T. Vachaspati and A. Achucarro, Semilocal cosmic strings, Phys. Rev. D (3) 44 (1991), no. 10, 3067-3071. https://doi.org/10.1103/PhysRevD.44.3067
- F. Wang, Solitary waves for the Klein-Gordon-Maxwell system with critical exponent, Nonlinear Anal. 74 (2011), no. 3, 827-835. https://doi.org/10.1016/j.na.2010.09.033
- L. Xu and H. Chen, Existence and multiplicity of solutions for nonhomogeneous KleinGordon-Maxwell equations, Electron. J. Differential Equations 2015 (2015), No. 102, 12 pp.