• Title/Summary/Keyword: Critical Stress Intensity Factor

Search Result 146, Processing Time 0.027 seconds

Thermal Fatigue Life Prediction of Alumina by Finite Difference Model (유한 차분 모델을 이용한 알루미나의 열피로 수명 예측)

  • 이홍림;한봉석
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.229-235
    • /
    • 1993
  • Thermal history and thermal stress of alumina specimen, which occured from thermal shock process, were calculated by finite difference method. Stress intensity factor and crack growth in cyclic thermal fatigue were calculated from single thermal shock temperature history and thermal stress. Cyclic thermal life were estimated by bending strength after cyclic thermal shock under critical thermal shock temperature. Calculated stress intensity factor was compared with real experimental thermal fatigue life of specimen. Fatigue life until critical stress intensity factor and real experimental result were comparable.

  • PDF

Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses

  • Zhang, Jingyu;Zhu, Jiacheng;Ding, Shurong;Chen, Liang;Li, Wenjie;Pang, Hua
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1138-1147
    • /
    • 2018
  • Delayed hydride cracking (DHC) is an important failure mechanism for Zircaloy tubes in the demanding environment of nuclear reactors. The threshold stress intensity factor, $K_{IH}$, and critical hydride length, $l_C$, are important parameters to evaluate DHC. Theoretical models of them are developed for Zircaloy tubes undergoing non-homogenous temperature loading, with new stress distributions ahead of the crack tip and thermal stresses involved. A new stress distribution in the plastic zone ahead of the crack tip is proposed according to the fracture mechanics theory of second-order estimate of plastic zone size. The developed models with fewer fitting parameters are validated with the experimental results for $K_{IH}$ and $l_C$. The research results for radial cracking cases indicate that a better agreement for $K_{IH}$ can be achieved; the negative axial thermal stresses can lessen $K_{IH}$ and enlarge the critical hydride length, so its effect should be considered in the safety evaluation and constraint design for fuel rods; the critical hydride length $l_C$ changes slightly in a certain range of stress intensity factors, which interprets the phenomenon that the DHC velocity varies slowly in the steady crack growth stage. Besides, the sensitivity analysis of model parameters demonstrates that an increase in yield strength of zircaloy will result in a decrease in the critical hydride length $l_C$, and $K_{IH}$ will firstly decrease and then have a trend to increase with the yield strength of Zircaloy; higher fracture strength of hydrided zircaloy will lead to very high values of threshold stress intensity factor and critical hydride length at higher temperatures, which might be the main mechanism of crack arrest for some Zircaloy materials.

Mode III Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Anti-Plane Deformation (이방성재료 접합 띠판에 대한 면외 동적계면균열)

  • Park, Jae-Wan;Choi, Sung-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.111-116
    • /
    • 2000
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strip under out-of-plane clamped displacements is analyzed. The asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. The dynamic energy release rate is also obtained as a form related to the stress intensity factor.

  • PDF

A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints (기계적 체결부 균열의 피로균열성장에 관한 연구)

  • 허성필;양원호;정기현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

Mixed-Mode Fatigue Crack Growth Behavior of Cracks in Mechanical Joints Considering Critical Inclined Angle (임계 경사각을 고려한 기계적 체결부 균열의 혼합모드 피로균열성장 거동)

  • Heo, Sung-Pil;Yang, Won-Ho;Chung, Ki-Hyun;Ryu, Myung-Hai
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.187-192
    • /
    • 2001
  • Cracks in mechanical joints is generally under mixed-mode and there is the critical inclined angle at which mode I stress intensity factor becomes maximum. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed for horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using mode I and mode II stress intensity factors obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

  • PDF

Thermal Shock Stress Intensity Factor and Fracture Test (열충격 응력세기계수와 파괴실험)

  • 이강용;심관보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.130-137
    • /
    • 1990
  • Thermal shock stress intensity factor for an edge-cracked plate subjected to thermal shock is obtained from Bueckner's weight function method. It is shown that thermal shock stress intensity factor has maximum values with variation of time and crack length and that there is most dangerous crack length. By comparing thermal shock stress intensity factor with fracture toughness, the fracture time and critical temperature difference due to thermal shock are determined theoretically. Under constant thermal shock temperature difference, and increase of crack length is shown to increase fracture time. The theoretical fracture time is compared with experimental value measured by acoustic emission method with soda lime glass.

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

가중함수법에 의한 볼트 체결부 균열의 임계 경사각 결정에 관한 연구

  • Heo, Seong-Pil;Yang, Won-Ho;Jeong, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2344-2352
    • /
    • 2000
  • Mechanical joints such as bolted or riveted joints are widely used in mechanical components. The reliable determination of the stress intensity factors for cracks in bolted joints is needed to evaluate the safety and fatigue life of them. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions because only the stress analysis of an uncracked model is required. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses for reference loadings. Critical inclined angle that mode I stress intensity factor becomes maximum is determined and the effects of crack length and the magnitude of clearance on critical inclined angle are investigated.

Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Out-of-Plane Deformation (면외변형하의 이방성 띠판에 대한 동적계면균열)

  • Park, Jae-Wan;Choe, Seong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.949-958
    • /
    • 2001
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strips under out-of-plane clamped displacements is analyzed. Using Fourier integral transform the problem is formulated and the Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. Using the near tip fields of stresses and displacements, the dynamic energy release rate is also obtained as a form of the stress intensiy factor.

Fatigue Crack Initiation and Propagation at Notches (노치 에서의 피로 균열 발생 과 전파 에 관한 연구)

  • 이강용;이택성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.141-144
    • /
    • 1984
  • The fatigue limits of crack initiation and propagation on the edge elliptical notched semi-infinite plate under completely reversed fatigue stress are determined theoretically. Assuming that the crack initiation and propagation occur when stress intensity factors of notched plate reach the critical values obtained from critical micro-crack length under plain fatigue limit loading and the threshold stress intensity factory, respectively, the fatigue limits of crack initiation and propagation are obtained. The induced theoretical fatigue limit of crack initiation is expressed in terms of plain fatigue limit, critical micro-crack length and notch shape. The one of crack propagation is in terms of threshold stress intensity factor, plain fatigue limit and notch shape. These theoretical results are showed to be in good agreement of Frost's experimental data.