• Title/Summary/Keyword: Critical Pathways

Search Result 276, Processing Time 0.026 seconds

The Rearrangement Reaction of CH3SNO2 to CH3SONO Studied by a Density Functional Theory Method

  • Choi, Yoon-Jeong;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1657-1660
    • /
    • 2004
  • Several critical geometries associated with the rearrangement of $CH_3SNO_2\;to\;CH_3SONO$ are calculated with the density functional theory (DFT) method and compared with those of the ab initio molecular orbital methods. There are two probable pathways for this rearrangement, one involving the transition state of an oxygen migration and the other through the homolytic decomposition to radicals. The reaction barrier via the transition state is about 60 kcal/mol and the decomposition energy into radicals about 35 kcal/mol, suggesting that the reaction pathway via the homolytic cleavage to radical species is energetically favorable. Since even the homolytic cleavage requires large energies, the rearrangement reaction is unlikely without the aid of catalysts.

Receptor for Advanced Glycation Endproducts (RAGE), Its Ligands, and Soluble RAGE: Potential Biomarkers for Diagnosis and Therapeutic Targets for Human Renal Diseases

  • Lee, Eun Ji;Park, Jong Hoon
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.224-229
    • /
    • 2013
  • Receptor for advanced glycation endproducts (RAGE) is a multi-ligand receptor that is able to bind several different ligands, including advanced glycation endproducts, high-mobility group protein (B)1 (HMGB1), S-100 calcium-binding protein, amyloid-${\beta}$-protein, Mac-1, and phosphatidylserine. Its interaction is engaged in critical cellular processes, such as inflammation, proliferation, apoptosis, autophagy, and migration, and dysregulation of RAGE and its ligands leads to the development of numerous human diseases. In this review, we summarize the signaling pathways regulated by RAGE and its ligands identified up to date and demonstrate the effects of hyper-activation of RAGE signals on human diseases, focused mainly on renal disorders. Finally, we propose that RAGE and its ligands are the potential targets for the diagnosis, monitoring, and treatment of numerous renal diseases.

Unified Molding and Simulation for Nano-structured Tungsten Carbide

  • Park, Seong-Jin;Johnson, John L.;German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.362-363
    • /
    • 2006
  • Nano-structured tungsten carbide compacts with cobalt matrices (WC-Co) offer new opportunities for achieving superior hardness and toughness combinations. A unified modeling and simulation tool has been developed to produce maps of sintering pathways from nanocrystalline WC powder to sintered nano-structured WC-Co compacts. This tool includes (1) die compaction, (2) grain growth, (3) densification, (4) sensitivity analysis, and (5) optimization. All material parameters were obtained by curve fitting based on results with two WC-Co powders. Critical processing parameters are determined based on sensitivity analysis and are optimized to minimize grain size with high density.

  • PDF

A Review of Mechanisms of Implantation

  • Kim, Su-Mi;Kim, Jong-Soo
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.351-359
    • /
    • 2017
  • Implantation is a highly organized process that involves an interaction between a receptive uterus and a competent blastocyst. In humans, natural fecundity suggests that the chance of conception per cycle is relatively low (~30%) and two-third of lost pregnancies occur because of implantation failure. Defective implantation leads to adverse pregnancy outcomes including infertility, spontaneous miscarriage, intrauterine fetal growth restriction and preeclampsia. With use of advanced scientific technologies, gene expression analysis and genetically-engineered animal models have revealed critical cellular networks and molecular pathways. But, because of ethical restrictions and the lack of a mechanistic experiment, comprehensive steps in human implantation have still not been completely understood. This review primarily focuses on the recent advances in mechanisms of implantation. Because infertility is an emerging issue these days, gaining an understanding the molecular and hormonal signaling pathway will improve the outcome of natural pregnancy and assisted reproductive technology.

Mass spectrometry-based approaches to explore metabolism regulating ferroptosis

  • Nguyen, Chi Thi Ngoc;Kim, Seon Min;Kang, Yun Pyo
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.413-416
    • /
    • 2022
  • Ferroptosis is a type of programmed cell death distinct from apoptosis or necroptosis. Ferroptosis is well characterized by an iron-dependent accumulation of lipid peroxides and disruption of cellular membrane integrity. Many metabolic alterations can prevent or accelerate ferroptosis induction. Recent advances in analytical techniques of mass spectrometry have allowed high-throughput analysis of metabolites known to be critical for understanding ferroptosis regulatory metabolism. In this review, we introduce mass spectrometry-based analytical methods contributing to recent discovery of various metabolic pathways regulating ferroptosis, focusing on cysteine metabolism, antioxidant metabolism, and poly-unsaturated fatty acid metabolism.

Reframing Loss: Chinese Diaspora Identity in K. H. Lim's Written in Black

  • Hannah Ming Yit Ho
    • SUVANNABHUMI
    • /
    • v.15 no.2
    • /
    • pp.131-152
    • /
    • 2023
  • In analyzing the Chinese diaspora, this paper explores losses that are encountered within the family in the nation. It argues that increased social and spatial mobilities that contribute to losses can be reconfigured through the productive lens of supermobility, as Laurence J. C. Ma conceptualizes it. Supermobile identities are significant avenues to consider the way that losses traditionally associated with migration and assimilation are revisited in view of new flows of migration and identification. In examining K. H. Lim's debut novel Written in Black (2014), this study addresses pathways from debilitating losses to productive losses journeyed by the family from the child's perspective. It offers a critical analysis of the Anglophone Bruneian novel in terms of its exclusive portrayal of an ethnic Chinese family. Departing from a fixed notion of home as cultural and physical rootedness, it explores flexible identities that are tied to shifting concepts of belonging. Rather than a magnification of social and spatial losses, the analysis highlights the way that the literary imagination of ethnic Chinese in Brunei Darussalam accommodates progressive ideas of the agency and advancement of the Chinese diaspora as a supermobile community.

Exploring the Potential of Glycolytic Modulation in Myeloid-Derived Suppressor Cells for Immunotherapy and Disease Management

  • Jisu Kim;Jee Yeon Choi;Hyeyoung Min;Kwang Woo Hwang
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.26.1-26.19
    • /
    • 2024
  • Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.

Dietary Transformation of Lipid in the Rumen Microbial Ecosystem

  • Kim, Eun Joong;Huws, Sharon A.;Lee, Michael R.F.;Scollan, Nigel D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1341-1350
    • /
    • 2009
  • Dietary lipids are rapidly hydrolysed and biohydrogenated in the rumen resulting in meat and milk characterised by a high content of saturated fatty acids and low polyunsaturated fatty acids (PUFA), which contributes to increases in the risk of diseases including cardiovascular disease and cancer. There has been considerable interest in altering the fatty acid composition of ruminant products with the overall aim of improving the long-term health of consumers. Metabolism of dietary lipids in the rumen (lipolysis and biohydrogenation) is a major critical control point in determining the fatty acid composition of ruminant lipids. Our understanding of the pathways involved and metabolically important intermediates has advanced considerably in recent years. Advances in molecular microbial technology based on 16S rRNA genes have helped to further advance our knowledge of the key organisms responsible for ruminal lipid transformation. Attention has focused on ruminal biohydrogenation of lipids in forages, plant oils and oilseeds, fish oil, marine algae and fat supplements as important dietary strategies which impact on fatty acid composition of ruminant lipids. Forages, such as grass and legumes, are rich in omega-3 PUFA and are a useful natural strategy in improving nutritional value of ruminant products. Specifically this review targets two key areas in relation to forages: i) what is the fate of the lipid-rich plant chloroplast in the rumen and ii) the role of the enzyme polyphenol oxidase in red clover as a natural plant-based protection mechanism of dietary lipids in the rumen. The review also addresses major pathways and micro-organisms involved in lipolysis and biohydrogenation.

Gene Expression Profiling of Liver and Mammary Tissues of Lactating Dairy Cows

  • Baik, M.;Etchebarne, B.E.;Bong, J.;VandeHaar, M.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.871-884
    • /
    • 2009
  • Gene expression profiling is a useful tool for identifying critical genes and pathways in metabolism. The objective of this study was to determine the major differences in the expression of genes associated with metabolism and metabolic regulation in liver and mammary tissues of lactating cows. We used the Michigan State University bovine metabolism (BMET) microarray; previously, we have designed a bovine metabolism-focused microarray containing known genes of metabolic interest using publicly available genomic internet database resources. This is a high-density array of 70mer oligonucleotides representing 2,349 bovine genes. The expression of 922 genes was different at p<0.05, and 398 genes (17%) were differentially expressed by two-fold or more with 222 higher in liver and 176 higher in mammary tissue. Gene ontology categories with a high percentage of genes more highly expressed in liver than mammary tissues included carbohydrate metabolism (glycolysis, glucoenogenesis, propanoate metabolism, butanoate metabolism, electron carrier and donor activity), lipid metabolism (fatty acid oxidation, chylomicron/lipid transport, bile acid metabolism, cholesterol metabolism, steroid metabolism, ketone body formation), and amino acid/nitrogen metabolism (amino acid biosynthetic process, amino acid catabolic process, urea cycle, and glutathione metabolic process). Categories with more genes highly expressed in mammary than liver tissue included amino acid and sugar transporters and MAPK, Wnt, and JAK-STAT signaling pathways. Real-time PCR analysis showed consistent results with those of microarray analysis for all 12 genes tested. In conclusion, microarray analyses clearly identified differential gene expression profiles between hepatic and mammary tissues that are consistent with the differences in metabolism of these two tissues. This study enables understanding of the molecular basis of metabolic adaptation of the liver and mammary gland during lactation in bovine species.

Immune Enhancement Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways on RAW 264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-shik;You, SangGuan;Lee, Hyungjae;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.349-356
    • /
    • 2018
  • Asterias amurensis is a marine organism that causes damage to the fishing industry worldwide; however, it has been considered a promising source of functional components. The present study aimed to investigate the immune-enhancing effects of fatty acids from three organs of A. amurensis on murine macrophages (RAW 264.7 cells). A. amurensis fatty acids boosted production of immune-associated factors such as nitric oxide (NO) and prostaglandin E2 in RAW 264.7 cells. A. amurensis fatty acids also enhanced the expression of critical immune-associated genes, including iNOS, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6, as well as COX-2. Western blotting showed that A. amurensis fatty acids stimulated the $NF-{\kappa}B$ and MAPK pathways by phosphorylation of $NF-{\kappa}B$ p-65, p38, ERK1/2, and JNK. A. amurensis fatty acids from different tissues resulted in different levels of $NF-{\kappa}B$ and MAPK phosphorylation in RAW 264.7 cells. The results increase our understanding of how A. amurensis fatty acids boost immunity in a physiological system, as a potential functional material.