Browse > Article
http://dx.doi.org/10.5012/bkcs.2004.25.11.1657

The Rearrangement Reaction of CH3SNO2 to CH3SONO Studied by a Density Functional Theory Method  

Choi, Yoon-Jeong (Department of Chemistry, and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology)
Lee, Yoon-Sup (Department of Chemistry, and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology)
Publication Information
Abstract
Several critical geometries associated with the rearrangement of $CH_3SNO_2\;to\;CH_3SONO$ are calculated with the density functional theory (DFT) method and compared with those of the ab initio molecular orbital methods. There are two probable pathways for this rearrangement, one involving the transition state of an oxygen migration and the other through the homolytic decomposition to radicals. The reaction barrier via the transition state is about 60 kcal/mol and the decomposition energy into radicals about 35 kcal/mol, suggesting that the reaction pathway via the homolytic cleavage to radical species is energetically favorable. Since even the homolytic cleavage requires large energies, the rearrangement reaction is unlikely without the aid of catalysts.
Keywords
Rearrangement reaction of thionitrate; Density functional theory calculations; Ab initio MO calculations;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622.   DOI
2 Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1990, 93, 2537.   DOI
3 Choi, Y. J.; Bae, C.; Lee, Y. S.; Lee, S. Bull. Korean Chem. Soc. 2003, 24, 728.   DOI   ScienceOn
4 Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.   DOI
5 Feelisch, M. J. Cardiovasc. Pharmacol. 1991, 17, Suppl. 3, 25.
6 Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898.   DOI
7 Zhang, H.; Squadrito, G.; Uppu, R.; Lemercier, J.-N.; Cuerto, R.; Pryor, W. Arch. Biochem. Biophys. 1997, 339, 183.   DOI   ScienceOn
8 Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.   DOI
9 Frisch, M. J. et al. Gaussian 03 (Revison A.1); Gaussian Inc.: Pittsburgh, PA, 2003.
10 Fukui, K. J. Phys. Chem. 1970, 74, 4161.   DOI
11 Chan, S. L.; Lim, C. J. Phys. Chem. 1994, 98, 692.   DOI   ScienceOn
12 Adamo, C.; Barone, V. J. Chem. Phys. 1998, 110, 6158.   DOI   ScienceOn
13 McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.   DOI
14 Galla, H.-J. Angew. Chem. Int. Ed. Engl. 1993, 23, 378.
15 Traylor, T. G.; Sharma, V. S. Biochemistry 1992, 31, 2874.   DOI   ScienceOn
16 Cramer, C.; Trulhler, D. J. Comput.-Aided Mol. Des. 1992, 6, 629.   DOI
17 van der Vliet, A.; Hoen, P. A. C.; Wong, P. S.-Y.; Bast, A.; Cross, C. E. J. Biol. Chem. 1998, 273, 30225.   DOI
18 Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1990, 94, 5523.   DOI
19 Artz, J. D.; Yang, K.; Lock, J.; Sanchez, C.; Bennett, B. M.; Thatcher, G. R. J. Chem. Commun. 1996, 927.
20 Cameron, D. R.; Borrajo, A. M. P.; Bennet, B. M.; Thatcher, G. R. J. Can. J. Chem. 1995, 73, 102.
21 Cramer, C.; Truhlar, D. J. Comput. Chem. 1992, 13, 1089.   DOI
22 Davidson, C.; Kaminski, P.; Wu, M.; Wolin, M. Am. J. Physiol. 1996, 270, H1038.
23 Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.   DOI
24 Wang, S. K.; Zhang, Q. Z.; Zhou, J. H.; Gu, Y. S. Chinese Chem. Lett. 2002, 13, 805.
25 Han, Y.-K.; Kim, K. H.; Son, S.-K.; Lee, Y. S. Bull. Korean Chem. Soc. 2002, 23, 1267.   DOI   ScienceOn
26 Oae, S.; Shinhama, K.; Fujimori, K.; Kim, Y. H. Bull. Chem. Soc. Jpn. 1980, 775.