Browse > Article
http://dx.doi.org/10.5713/ajas.2009.90061

Gene Expression Profiling of Liver and Mammary Tissues of Lactating Dairy Cows  

Baik, M. (Major in Molecular Biotechnology, Biotechnology Research Institute)
Etchebarne, B.E. (Department of Animal Science, Michigan State University)
Bong, J. (Major in Molecular Biotechnology, Biotechnology Research Institute)
VandeHaar, M.J. (Department of Animal Science, Michigan State University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.6, 2009 , pp. 871-884 More about this Journal
Abstract
Gene expression profiling is a useful tool for identifying critical genes and pathways in metabolism. The objective of this study was to determine the major differences in the expression of genes associated with metabolism and metabolic regulation in liver and mammary tissues of lactating cows. We used the Michigan State University bovine metabolism (BMET) microarray; previously, we have designed a bovine metabolism-focused microarray containing known genes of metabolic interest using publicly available genomic internet database resources. This is a high-density array of 70mer oligonucleotides representing 2,349 bovine genes. The expression of 922 genes was different at p<0.05, and 398 genes (17%) were differentially expressed by two-fold or more with 222 higher in liver and 176 higher in mammary tissue. Gene ontology categories with a high percentage of genes more highly expressed in liver than mammary tissues included carbohydrate metabolism (glycolysis, glucoenogenesis, propanoate metabolism, butanoate metabolism, electron carrier and donor activity), lipid metabolism (fatty acid oxidation, chylomicron/lipid transport, bile acid metabolism, cholesterol metabolism, steroid metabolism, ketone body formation), and amino acid/nitrogen metabolism (amino acid biosynthetic process, amino acid catabolic process, urea cycle, and glutathione metabolic process). Categories with more genes highly expressed in mammary than liver tissue included amino acid and sugar transporters and MAPK, Wnt, and JAK-STAT signaling pathways. Real-time PCR analysis showed consistent results with those of microarray analysis for all 12 genes tested. In conclusion, microarray analyses clearly identified differential gene expression profiles between hepatic and mammary tissues that are consistent with the differences in metabolism of these two tissues. This study enables understanding of the molecular basis of metabolic adaptation of the liver and mammary gland during lactation in bovine species.
Keywords
Bovine; Metabolism; Microarray; Gene Expression Profiling; Liver; Mammary Gland;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Binelli, M., W. K. Vanderkooi, L. T. Chapin, M. J. Vandehaar, J. D. Turner, W. M. Moseley and H. A. Tucker. 1995. Comparison of growth hormone-releasing factor and somatotropin: body growth and lactation of primiparous cows. J. Dairy Sci. 78:2129-2139   DOI   ScienceOn
2 Bionaz, M. and J. J. Loor. 2008. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138:1019-1024   PUBMED
3 Furuhashi, M. and G. S. Hotamisligil. 2008. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7:489-503   DOI   ScienceOn
4 Hartwell, J. R., M. J. Cecava, B. Miller and S. S. Donkin. 1999. Rumen protected choline and dietary protein for transition cows. J. Dairy Sci. 82 (Suppl. 1):125(Abstr.)
5 Heid, H. W., M. Schnolzer and T. W. Keenan. 1996. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem J. 320(Pt 3):1025-1030   PUBMED
6 Hunt, C. R., J. H. Ro, D. E. Dobson, H. Y. Min and B. M. Spiegelman. 1986. Adipocyte P2 gene: developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc. Natl. Acad. Sci. USA 83:3786-3790   DOI   PUBMED
7 Kanai, Y. and M. A. Hediger. 2004. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch. 447:469-479   DOI   ScienceOn
8 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408   DOI   ScienceOn
9 Moore, J. H. and W. W. Christie. 1979. Lipid metabolism in the mammary gland of ruminant animals. Prog. Lipid Res. 17:347-395   DOI   ScienceOn
10 Pfaffl, M. W., S. L. Wittmann, H. H. Meyer and R. M. Bruckmaier. 2003. Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. J. Dairy Sci. 86:538-545   DOI   ScienceOn
11 Rudolph, M. C., J. L. McManaman, T. Phang, T. Russell, D. J. Kominsky, N. J. Serkova, T. Stein, S. M. Anderson and M. C. Neville. 2007. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol. Genomics 28:323-336   DOI   ScienceOn
12 Stover, P. J. 2004. Nutritional genomics. Physiol. Genomics 16:161-165   DOI   PUBMED   ScienceOn
13 Turashvili, G., J. Bouchal, G. Burkadze and Z. Kolar. 2006. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 73:213-223   DOI   ScienceOn
14 Xu, C., Z. Wang, G. Liu, X. Li, G. Xie and H. Zhang. 2008. Metabolic characteristic of the liver of dairy cows during ketosis based on comparative proteomics. Asian-Aust. J. Anim. Sci. 21:1003-1010
15 Weldon, S. L., A. Rando, A. S. Matathias, Y. Hod, P. A. Kalonick, A. Savon, J. S. Cook and R. W. Hanson. 1990. Mitochondrial phosphoenolpyruvate carboxykinase from the chicken. J. Biol. Chem. 265:7308-7317   PUBMED
16 Bionaz, M. and J. J. Loor. 2008. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 31:366   DOI   ScienceOn
17 Miyoshi, K., J. M. Shillingford, G. H. Smith, S. L. Grimm, K. U. Wagner, T. Oka, J. M. Rosen, G. W. Robinson and L. Hennighausen. 2001. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J. Cell Biol. 155:531-542   DOI   ScienceOn
18 Yamashita, A., H. Nakanishi, H. Suzuki, R. Kamata, K. Tanaka, K. Waku and T. Sugiura. 2007. Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycero-3-phosphate acyltransferase 1. Biochim. Biophys. Acta. 1771:1202-1215   DOI   PUBMED   ScienceOn
19 Dahlquist, K. D., N. Salomonis, K. Vranizan, S. C. Lawlor and B. R. Conklin. 2002. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31:19-20   DOI   ScienceOn
20 Hod, Y., J. S. Cook, S. L. Weldon, J. M. Short, A. Wynshaw-Boris and R. W. Hanson. 1986. Differential expression of the genes for the mitochondrial and cytosolic forms of phosphoenolpyruvate carboxykinase. Ann. NY Acad. Sci. 478:31-45   DOI   PUBMED
21 Stahl, A. 2004. A current review of fatty acid transport proteins (SLC27). Pflugers Arch. 447:722-727   DOI   PUBMED   ScienceOn
22 Finucane, K. A., T. B. McFadden, J. P. Bond, J. J. Kennelly and F. Q. Zhao. 2008. Onset of lactation in the bovine mammary gland: gene expression profiling indicates a strong inhibition of gene expression in cell proliferation. Funct. Integr. Genomics 8:251-264   DOI   ScienceOn
23 Martin-Hidalgo, A., L. Huerta, N. Alvarez, G. Alegria, M. del Val Toledo and E. Herrera. 2005. Expression, activity, and localization of hormone-sensitive lipase in rat mammary gland during pregnancy and lactation. J. Lipid Res. 46:658-668   DOI   ScienceOn
24 Verrey, F., E. I. Closs, C. A. Wagner, M. Palacin, H. Endou and Y. Kanai. 2004. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch. 447:532-542   DOI   ScienceOn
25 Smith, S. B. and R. L. Prior. 1986. Comparisons of lipogenesis and glucose metabolism between ovine and bovine adipose tissues. J. Nutr. 116:1279-1286   PUBMED
26 Adams, T. E., J. A. Hansen, R. Starr, N. A. Nicola, D. J. Hilton and N. Billestrup. 1998. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J. Biol. Chem. 16:1285-1287   DOI   ScienceOn
27 Brennan, K. R. and A. M. Brown. 2004. Wnt proteins in mammary development and cancer. J. Mammary Gland Biol. Neoplasia 9:119-131   DOI   ScienceOn
28 Doniger, S. W., N. Salomonis, K. D. Dahlquist, K. Vranizan, S. C. Lawlor and B. R. Conklin. 2003. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4:R7   DOI   PUBMED
29 Winkelman, L. A., M. C. Lucy, T. H. Elsasser, J. L. Pate and C. K. Reynolds. 2008. Short communication: suppressor of cytokine signaling-2 mRNA increases after parturition in the liver of dairy cows. J. Dairy Sci. 91:1080-1086   DOI   ScienceOn
30 Wall, E. H., T. L. Auchtung-Montgomery, G. E. Dahl and T. B. McFadden. 2005. Short communication: Short day photoperiod during the dry period decreases expression of suppressors of cytokine signaling in the mammary gland of dairy cows. J. Dairy Sci. 88:3145-3148   DOI   ScienceOn
31 Subbaramaiah, K., R. Benezra, C. Hudis and A. J. Dannenberg. 2008. Cyclooxygenase-2-derived prostaglandin E2 stimulates Id-1 transcription. J. Biol. Chem. 5:33955-33968   DOI   ScienceOn
32 Hood, R. L., E. H. Thompson and C. E. Allen. 1972. The role of acetate, propionate and glucose as substrates for lipogenesis in bovine tissues. Int. J. Biochem. 3:598-606   DOI   ScienceOn
33 Etchebarne, B. E., W. Nobis, M. S. Allen, and M. J. VandeHaar. 2004. Design of a bovine metabolism oligonucleotide gene array. J. Anim. Feed Sci. 13(Suppl. 1):385-388
34 Muscher, A., G. Breves and K. Huber. 2008. Modulation of apical Na/P(i) cotransporter type IIb expression in epithelial cells of goat mammary glands. J. Anim. Physiol. Anim. Nutr (Berl). (Epub ahead of print)
35 Fukumoto, H., S. Seino, H. Imura, Y. Seino, R. L. Eddy, Y. Fukushima, M. G. Byers, T. B. Shows and G. I. Bell. 1988. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. USA 85:5434-5438   DOI   ScienceOn
36 Evarts, J. L., J. J. Rasweiler, R. R. Behringer, L. Hennighausen and G. W. Robinson. 2004. A morphological and immunohistochemical comparison of mammary tissues from the short-tailed fruit bat (Carollia perspicillata) and the mouse. Biol. Reprod.70:1573-1579   DOI   ScienceOn
37 Shillingford, J. M., D. T. Calvert, R. B. Beechey and D. B. Shennan. 1996. Phosphate transport via Na-Pi cotransport and anion exchange in lactating rat mammary tissue. Exp. Physiol. 81: 273-284   PUBMED
38 Chmurzynska, A. 2006. The multigene family of fatty acidbinding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47:39-48   DOI   PUBMED   ScienceOn
39 Pulverer, B. J., J. M. Kyriakis, J. Avruch, E. Nikolakaki and J. R. Woodgett. 1991. Phosphorylation of c-jun mediated by MAP kinases. Nature 17:670-674   DOI   ScienceOn
40 Hirsch, D., A. Stahl and H. F. Lodish. 1998. A family of fatty acid transporters conserved from mycobacterium to man. Proc. Natl. Acad. Sci. USA 95:8625-8629   DOI   ScienceOn
41 Zhao, F. Q. and A. F. Keating. 2007. Expression and regulation of glucose transporters in the bovine mammary gland. J. Dairy Sci. 90 Suppl 1:E76-E86
42 Vernon, R. G., A. Faulkner, E. Finley, H. Pollock and E. Taylor. 1987. Enzymes of glucose and fatty acid metabolism of liver, kidney, skeletal muscle, adipose tissue and mammary gland of lactating and non-lactating sheep. J. Anim. Sci. 64:1395-1411   PUBMED