Dietary Transformation of Lipid in the Rumen Microbial Ecosystem |
Kim, Eun Joong
(Institute of Biological, Environmental and Rural Sciences, Aberystwyth University)
Huws, Sharon A. (Institute of Biological, Environmental and Rural Sciences, Aberystwyth University) Lee, Michael R.F. (Institute of Biological, Environmental and Rural Sciences, Aberystwyth University) Scollan, Nigel D. (Institute of Biological, Environmental and Rural Sciences, Aberystwyth University) |
1 | Harfoot, C. G., R. C. Noble and J. H. Moore. 1973. Food particles as a site for biohydrogenation of unsaturated fatty acids in the rumen. Biochem. J. 132:829-832 PUBMED |
2 | Hungate, R. E. 1966. The Rumen and its Microbes. Academic press, London and New York |
3 | Hungate, R. E., J. Reichl and R. Prins. 1971. Parameters of fermentation in a continuously fed sheep: evidence of a microbial rumination pool. Appl. Microbiol. 22:1104-1113 PUBMED |
4 | Huws, S. A., M. R. F. Lee, S. Muetzel, R. J. Wallace and N. D. Scollan. 2006. Effect of forage type and level of fish oil inclusion on bacterial diversity in the rumen. Reprod. Nutr. Dev. 46(Suppl. 1):S99 |
5 | Igarashi, K. and T. Yasui. 1985. Oxidation of free methionine and methionine residues in protein involved in the browning reaction of phenolic compounds. Agric. Biol. Chem. 49:2309-2315 DOI |
6 | Jenkins, T. C., R. J. Wallace, P. J. Moate and E. E. Mosley. 2008. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86:397-412 DOI ScienceOn |
7 | Kemp, P., R. W. White and D. J. Lander. 1975. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J. Gen. Microbiol. 90:100-114 DOI PUBMED ScienceOn |
8 | Kim, E. J., S. A. Huws, M. R. F. Lee, J. D. Wood, S. M. Muetzel, R. J. Wallace and N. D. Scollan. 2008. Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J. Nutr. 138:889-896 |
9 | Kim, Y. J., R. H. Liu, J. L. Rychlik and J. B. Russell. 2002. The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J. Appl. Microbiol. 92:976-982 DOI ScienceOn |
10 | Kopecny, J., M. Zorec, J. Mrazek, Y. Kobayashi and R. Marinsek-Logar. 2003. Butyrivibrio hungatei sp nov and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int. J. Syst. Evol. Microbiol. 53:201-209 DOI ScienceOn |
11 | Lee, M. R. F., P. R. Evans, G. R. Nute, R. I. Richardson and N. D. Scollan. 2009. A comparison between red clover silage and grass silage feeding on fatty acid composition, meat stability and sensory quality of the M. Longissimus muscle of dairy cull cows. Meat Sci. 81:738-744 DOI ScienceOn |
12 | Lee, M. R. F., L. J. Harris, R. J. Dewhurst, R. J. Merry and N. D. Scollan. 2003. The effect of clover silages on long chain fatty acid rumen transformations and digestion in beef steers. Anim. Sci. 76:491-501 |
13 | Lee, M. R. F., V. J. Theobald, J. K. S. Tweed, A. L. Winters and N. D. Scollan. 2008a. Effect of feeding fresh or conditioned red clover on milk fatty acids and nitrogen utilization in lactating dairy cows. J. Dairy Sci. doi:10.3168/jds.2008-1692 DOI ScienceOn |
14 | Lee, M. R. F., J. K. S. Tweed, F. R. Minchin and A. L. Winters. 2008b. Red clover polyphenol oxidase: activation, activity and efficacy under grazing. Anim. Feed Sci. Technol. doi:10.1016/j.anifeedsci.2008.06.013 DOI ScienceOn |
15 | Maia, M. R. G., L. C. Chaudhary, L. Figueres and R. J. Wallace. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 91:303-314 DOI ScienceOn |
16 | Stewart, R. J., B. J. B. Sawyer, C. S. Bucheli and S. P. Robinson. 2001. Polyphenol oxidase is induced by chilling and wounding in pineapple. Aust. J. Plant Physiol. 28:181-191 |
17 | Moore, B. M. and W. H. Flurkey. 1990. Sodium dodecyl sulphate activation of a plant polyphenoloxidase - effect of sodium dodecyl sulphate on enzymatic and physical characteristics of broad bean polyphenoloxydase. J. Biol. Chem. 265:4982-4988 PUBMED |
18 | Shingfield, K. J. and J. M. Griinari. 2007. Role of biohydrogenation intermediates in milk fat depression. Eur. J. Lipid Sci. Technol. 109:799-816 DOI ScienceOn |
19 | Sinclair, L. A., S. L. Cooper, J. A. Huntington, R. G. Wilkinson, K. G. Hallett, M. Enser and J. D. Wood. 2005. In vitro biohydrogenation of n-3 polyunsaturated fatty acids protected against ruminal microbial metabolism. Anim. Feed Sci. Technol. 124:579-596 |
20 | Wallace, R. J. 2004. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 63:621-629 DOI PUBMED |
21 | Williams, P. P., J. Gutierrez and R. E. Davis. 1963. Lipid metabolism of rumen ciliates and bacteria. II. Uptake of fatty acids and lipid analysis of Isotrichia intestinalis and rumen bacteria with further information on Entodinium simplex. Appl. Microbiol. 11:260-264 |
22 | Doreau, M. and A. Ferlay. 1994. Digestion and utilisation of fatty acids by ruminants. Anim. Feed Sci. Technol. 45:379-396 DOI ScienceOn |
23 | Collomb, M., U. Butikofer, R. Sieber, B. Jeangros and J. O. Bosset. 2002. Composition of fatty acids in cow's milk fat produced in the lowlands, mountains and highlands of Switzerland using high-resolution gas chromatography. Intl. Dairy J. 12:649-659 DOI ScienceOn |
24 | Dawson, R. M. C. and P. Kemp. 1969. The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen. Biochem. J. 115:351-352 PUBMED |
25 | Dewhurst, R. J., K. J. Shingfield, M. R. F. Lee and N. D. Scollan. 2006. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Technol. 131:168-206 DOI ScienceOn |
26 | Fotouhi, N. and T. C. Jenkins. 1992. Resistance of fatty acyl amides to degradation and hydrogenation by ruminal microorganisms. J. Dairy Sci. 75:1527-1532 DOI ScienceOn |
27 | Harfoot, C. G. 1978. Lipid metabolism in the rumen. Prog. Lipid Res. 17:21-54 |
28 | Harfoot, C. G. and G. P. Hazlewood. 1997. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Chapman & Hall. London. pp.382-426 |
29 | Van Dorland, H. A., M. Kreuzer, H. Leuenberger and H. R. Wettstein. 2008. Comparative potential of white and red clover to modify the milk fatty acid profile of cows fed ryegrassbased diets from zero-grazing and silage systems. J. Sci. Food Agric. 88:77-85 DOI ScienceOn |
30 | Paillard, D., N. McKain, L. C. Chaudhary, N. D. Walker, F. Pizette, I. Koppova, N. R. McEwan, J. Kopecny, P. E. Vercoe, P. Louis and R. J. Wallace. 2007. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek. 91:417-422 DOI ScienceOn |
31 | van de Vossenberg, J. and K. N. Joblin. 2003. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Lett. Appl. Microbiol. 37:424-428 DOI ScienceOn |
32 | Goldfine, H. 1982. Lipids of prokaryotes: structure and distribution. In: Current topics in membranes and transport (Ed. F. Bronner and A. Kleinzeller). Academic Press. New York and London. pp. 1-43 |
33 | Nozue, M., D. Arakawa, Y. Iwata, H. Shioiri and M. Kojima. 1999. Activation by proteolysis in vivo of 60-kd latent polyphenol oxidases in sweet potato cells in suspension culture. J. Plant Physiol. 155:297-301 DOI ScienceOn |
34 | Scollan, N., J.-F. Hocquette, K. Nuernberg, D. Dannenberger, I. Richardson and A. Moloney. 2006. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 74:17-33 DOI ScienceOn |
35 | Grabber, J. H. 2008. Mechanical maceration divergently shifts protein degradability in condensed-tannin vs. o-quinone containing conserved forages. Crop Sci. 48:804-813 DOI ScienceOn |
36 | Wright, D. E. 1959. Hydrogenation of lipids by rumen protozoa. Nature 184:875-876 DOI PUBMED ScienceOn |
37 | Carriquiry, M., W. J. Weber, L. H. Baumgard and B. A. Crooker. 2008. In vitro biohydrogenation of four dietary fats. Anim. Feed Sci. Technol. 141:339-355 DOI ScienceOn |
38 | Henderson, C. 1973. The effects of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci. (Camb.). 81:107-112 DOI |
39 | Huws, S. A., E. J. Kim, A. H. Kingston-Smith, M. R. F. Lee, S. M. Muetzel, C. J. Newbold, R. J. Wallace and N. D. Scollan. 2009. Rumen protozoa are rich in polyunsaturated fatty acids due to the ingestion of chloroplast. FEMS Microbiol. Ecol. In press DOI ScienceOn |
40 | Girard, V. and J. C. Hawke. 1978. The role of holotrichs in the metabolism of dietary linoleic acid in the rumen. Biochim. Biophys. Acta. 528:17-27 DOI PUBMED ScienceOn |
41 | Hudson, J. A., B. Morvan and K. N. Joblin. 1998. Hydration of linoleic acid by bacteria isolated from ruminants. FEMS Microbiol. Lett. 169:277-282 DOI ScienceOn |
42 | Scollan, N. D., M. Enser, S. K. Gulati, I. Richardson and J. D. Wood. 2003. Effects of including a ruminally protected lipid supplement in the diet on the fatty acid composition of beef muscle. Br. J. Nutr. 90:709-716 DOI ScienceOn |
43 | Wachira, A. M., L. A. Sinclair, R. G. Wilkinson, K. Hallett, M. Enser and J. D. Wood. 2000. Rumen biohydrogenation of n-3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibility in sheep. J. Agric. Sci. 135:419-428 DOI ScienceOn |
44 | Hudson, J. A., Y. Cai, R. J. Corner, B. Morvan and K. N. Joblin. 2000. Identification and enumeration of oleic acid and linoleic acid hydrating bacteria in the rumen of sheep and cows. J. Appl. Microbiol. 88:286-292 DOI ScienceOn |
45 | Gerson, T., A. John and A. S. D. King. 1986. Effects of feeding ryegrass of varying maturity on the metabolism and composition of lipids in the rumen of sheep. J. Agric. Sci. (Camb.). 106:445-448 DOI |
46 | Abde, M., T. Iriki, N. Tobe and H. Shibui. 1981. Sequestration of holotrich protozoa in the reticulo-rumen of cattle. Appl. Environ. Microbiol. 41:758-765 PUBMED |
47 | Nam, I. S. and P. C. Garnsworthy. 2007. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J. Appl. Microbiol. 103:551-556 DOI ScienceOn |
48 | Dohme, F., V. Fievez, K. Raes and D. I. Demeyer. 2003. Increasing levels of two different fish oils lower ruminal biohydrogenation of eicosapentaenoic and docosahexaenoic acid in vitro. Anim. Res. 52:309-320 DOI ScienceOn |
49 | Li, L. and J. C. Steffens. 2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta. 215:239-247 DOI ScienceOn |
50 | Lough, A. K. 1970. Aspects of lipid digestion in the ruminant. In: Physiology of Digestion and Metabolism in the Ruminant (Ed. A. T. Phillipson). Oriel Press. Newcastle upon Tyne, UK. pp. 519-528 |
51 | Sinclair, L. A. 2007. Nutritional manipulation of sheep of the fatty acid composition neat: a review. J. Agric. Sci. 145:419-434 DOI ScienceOn |
52 | Counotte, G. H. M., R. A. Prins, R. H. A. M. Janssen and M. J. A. deBie. 1981. The role of Megasphaera elsdenii in the fermentation of D,L-(2-)-lactate in the rumen of dairy cattle. Appl. Environ. Microbiol. 42:649-655 PUBMED |
53 | Gerson, T., A. John and A. S. D. King. 1985. The effects of dietary starch and fibre on the in vitro rates of lipolysis and hydrogenation by sheep rumen digesta. J. Agric. Sci. (Camb.). 105:27-30 DOI |
54 | Hazlewood, G. P. and R. M. C. Dawson. 1975. Isolation and properties of a phospholipids-hydrolyzing bacterium from ovine rumen fluid. J. Gen. Microbiol. 89:163-174 DOI ScienceOn |
55 | Hobson, P. N. and C. S. Stewart. 1997. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Blackie Academic and Professional Press. London. pp. 382-419 |
56 | Park, Y., J. Storkson, K. Albright, W. Liu and M. Pariza. 1999. Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34:235-241 DOI ScienceOn |
57 | Thipyapong, P., J. Melkonian, D. W. Wolfe and J. C. Steffens. 2004. Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci. 167:693-703 DOI ScienceOn |
58 | Lafontan, M., M. Berlan, V. Stich, F. Crampes, D. Riviere, I. de Glisezinski, C. Sengenes and J. Galitzky. 2002. Recent data on the regulation of lipolysis by catecholamines and natriuretic peptides. Ann. Endocrinol. 63:86-90 PUBMED |
59 | Atkinson, R. L., E. J. Scholljegerdes, S. L. Lake, V. Nayigihugu, B. W. Hess and D. C. Rule. 2006. Site and extent of digestion, duodenal flow, and intestinal disappearance of total and esterified fatty acids in sheep fed a high-concentrate diet supplemented with high-linoleate safflower oil. J. Anim. Sci. 84:387-396 PUBMED |
60 | Givens, D. I. 2005. The role of animal nutrition in improving the nutritive value of animal-derived foods in relation to chronic disease. Proc. Nutr. Soc. 64:395-402 DOI PUBMED |
61 | Min, B. R., T. N. Barry, G. T. Attwood and W. C. McNabb. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim. Feed Sci. Technol. 106:3-19 DOI ScienceOn |
62 | Palmquist, D. L., A. L. Lock, K. J. Shingfield and D. E. Bauman. 2005. Biosynthesis of conjugated linoleic acid in ruminants and humans. In: Advances in Food and Nutrition Research (Ed. S. L. Taylor) No. 50. Elsevier Academic Press. San Diego, CA. pp. 179-217 |
63 | Lee, M. R. F., L. J. Parfitt, N. D. Scollan and F. R. Minchin. 2007. Lipolysis in red clover with different polyphenol oxidase activities in the presence and absence of rumen fluid. J. Sci. Food Agric. 87:1308-1314 DOI ScienceOn |
64 | Richardson, R. I., P. Costa, G. R. Nute and N. D. Scollan. 2005. The effect of feeding clover silage on polyunsaturated fatty acid and vitamin E content, sensory, colour and lipid oxidative shelf life of beef loin steaks. In: Proceedings of the 51st international congress of meat science and technology, Exploring the wide world of meat, Baltimore, USA. pp. 1654-1661 |
65 | Doreau, M. and Y. Chilliard. 1997. Effects of ruminal or postruminal fish oil supplementation on intake and digestion in dairy cows. Reprod. Nutr. Dev. 37:113-124 DOI ScienceOn |
66 | Scollan, N. D., M. S. Dhanoa, N. J. Choi, W. J. Maeng, M. Enser and J. D. Wood. 2001. Biohydrogenation and digestion of long chain fatty acids in steers fed on different sources of lipid. J. Agric. Sci. 136:345-355 |
67 | Shi, J., K. Arunasalam, D. Yeung, Y. Kakuda, G. Mittal and Y. M. Jiang. 2004. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Med. Food 7:67-78 DOI ScienceOn |
68 | Wallace, R. J., N. McKain, K. J. Shingfield and E. Devillard. 2007. Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. J. Lipid Res. 48:2247-2254 DOI ScienceOn |
69 | Devillard, E., F. M. McIntosh, C. J. Newbold and R. J. Wallace. 2006. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Br. J. Nutr. 96:697-704 PUBMED |
70 | Latham, M. J., J. E. Storry and M. E. Sharpe. 1972. Effect of lowroughage diets on the microflora and lipid metabolism in the rumen. Appl. Microbiol. 24:871-877 PUBMED |
71 | Lourenco, M., G. Van Ranst and V. Fievez. 2005. Differences in extent of lipolysis in red or white clover and ryegrass silages in relation to polyphenol oxidase activity. Comm. Agr. Appl. Biol. Sci. 70:169-172 PUBMED |
72 | Moreno, D. A., N. Ilic, A. Poulev, D. L. Brasaemle, S. K. Fried and I. Raskin. 2003. Inhibitory effects of grape seed extract on lipases. Nutr. 19:876-879 DOI ScienceOn |
73 | Mayer, A. M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochem. 67:2318-2331 DOI PUBMED ScienceOn |
74 | Fievez, V., B. Vlaeminck, T. Jenkins, F. Enjalbert and M. Doreau. 2007. Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ. Eur. J. Lipid Sci. Technol. 109:740-756 DOI ScienceOn |
75 | Wright, D. E. 1960. Hydrogenation of chloroplast lipids by rumen bacteria. Nature 185:546-547 DOI PUBMED |
76 | Ashes, J. R., B. D. Siebert, S. K. Gulati, A. Z. Cuthbertson and T. W. Scott. 1992. Incorporation of n-3 fatty acids of fish oil into tissue and serum lipids of ruminants. Lipids 27:629-631 DOI ScienceOn |
77 | Hawke, J. C. 1973. Lipids. In: Chemistry and Biochemistry of Herbage (Ed. U. W. Butler and R. W. Bailey). Academic Press.London. pp. 213-263 |
78 | Murphy, D. J. 1999. Plant lipids - their metabolism, function and utilization. In: Plant Biochemistry and Molecular Biology (Ed. P. J. Lea and R. C. Leegood). John Wiley & Sons. New York. pp. 119-135 |
79 | Gerson, T., A. S. D. King, K. E. Kelly and W. J. Kelly. 1988. Influence of particle size and surface area on in vitro rates of gas production, lipolysis of triacylglycerol and hydrogenation of linoleic acid by sheep rumen digesta or Ruminococcus flavefaciens. J. Agric. Sci. (Camb.). 110:31-37 DOI |
80 | Lee, M. R. F., J. K. S. Tweed, N. D. Scollan and M. L. Sullivan. 2008c. Mechanism of polyphenol oxidase action in reducing lipolysis and proteolysis in red clover during batch culture incubation. Proc. Br. Soc. Anim. Sci. p. 31 |
81 | Schauff, D. J. and J. H. Clark. 1989. Effects of prilled fatty acids and calcium salts of fatty acids in rumen fermentation, nutrient digestibilities, milk production and milk composition. J. Dairy Sci. 72:917-927 DOI ScienceOn |
82 | Wallace, R. J., L. C. Chaudhary, N. McKain, N. R. McEwan, A. J. Richardson, P. E. Vercoe, N. D. Walker and D. Paillard. 2006. Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol. Lett. 265:195-201 DOI ScienceOn |
83 | Wang, J. H. and C. P. Constabel. 2004. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta. 220:87-96 DOI ScienceOn |
84 | Lee, M. R. F., A. L. Winters, N. D. Scollan, R. J. Dewhurst, M. K. Theodorou and F. R. Minchin. 2004. Plant-mediated lipolysis and proteolysis in red clover with different polyphenol oxidase activities. J. Sci. Food Agric. 84:1639-1645 DOI ScienceOn |
85 | Lee, M. R. F., J. D. O. Colmenero, A. L. Winters, N. D. Scollan and F. R. Minchin. 2006. Polyphenol oxidase activity in grass and its effect on plant-mediated lipolysis and proteolysis of Dactylis glomerata (cocksfoot) in a simulated rumen environment. J. Sci. Food Agric. 86:1503-1511 DOI ScienceOn |
86 | Lee, M. R. F., J. K. S. Tweed, N. D. Scollan and M. L. Sullivan. 2008d. Ruminal micro-organisms do not adapt to increase utilization of poly-phenol oxidase protected red clover protein and glycerol-based lipid. J. Sci. Food Agric. 88:2479-2485 DOI ScienceOn |
87 | Or-Rashid, M. M., N. E. Odongo and B. W. McBride. 2007. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd chain and branched-chain fatty acids. J. Anim. Sci. 85:1228-1234 DOI ScienceOn |
88 | Engle, T. E., V. Fellner and J. W. Spears. 2001. Copper status, serum cholesterol, and milk fatty acid profile in Holstein cows fed varying concentrations of copper. J. Dairy Sci. 84:2308-2313 DOI ScienceOn |
89 | Gerson, T., A. John and B. R. Sinclair. 1983. The effect of dietary N on in vitro lipolysis and fatty acid hydrogenation in rumen digesta from sheep fed diets high in starch. J. Agric. Sci. (Camb.). 101:97-101 DOI |
90 | Hawke, J. C. and W. R. Silcock. 1970. The in vitro rates of lipolysis and biohydrogenation in rumen contents. Biochim. Biophys. Acta. 218:201-212 DOI ScienceOn |
91 | Sullivan, M. L., R. D. Hatfield, S. L. Thoma and D. A. Samac. 2004. Cloning and characterization of red clover polyphenol oxidase cDNAs and expression of active protein in Escherichia coli and transgenic alfalfa. Plant Physiol. 136:3234-3244 DOI ScienceOn |
92 | Williams, A. G. and C. S. Coleman. 1992. The rumen protozoa. Springer-Verlag, New York |
93 | Kemp, P. and D. J. Lander. 1984. Hydrogenation in vitro of alphalinolenic acid to stearic acid by mixed cultures of pure strains of rumen bacteria. J. Gen. Microbiol. 130:527-533 |
94 | Winters, A. L. and F. R. Minchin. 2001. Red clover and the future for pasture legumes as an alternative protein source for ruminants. In: IGER Innovation No. 5. pp. 30-33 |
95 | Bauman, D. E. and A. L. Lock. 2006. Concepts in lipid digestion and metabolism in dairy cows. In: Proceedings of the 2006 Tri-State Dairy Nutrition Conference, Ohio USA. pp. 1-14 |
96 | Glasser, F., R. Schmidely, D. Sauvant and M. Doreau. 2008. Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors: 2. C18 fatty acids. Anim. 2:691-704 |
97 | Williams, C. M. 2000. Dietary fatty acids and human health. Ann. Zootech. (Paris). 49:165-180 DOI ScienceOn |
98 | Winters, A. L., F. R. Minchin, T. P. T. Michaelson-Yeates, M. R. F. Lee and P. Morris. 2008. Latent and active polyphenol oxidase (PPO) in red clover (Trifolium pratense) and use of a low PPO mutant to study the role of PPO in proteolysis reduction. J. Agric. Food Chem. 56:2817-2824 DOI ScienceOn |
99 | Hawke, J. C. 1971. The incorporation of long-chain fatty acids into lipids by rumen bacteria and the effect on biohydrogenation. Biochim. Biophys. Acta. 248:167-170 DOI PUBMED ScienceOn |
100 | Al-Mabruk, R. M., N. F. G. Beck and R. J. Dewhurst. 2004. Effects of silage species and supplemental vitamin E on the oxidative stability of milk. J. Dairy Sci. 87:406-412 DOI ScienceOn |