• Title/Summary/Keyword: Critical Nozzle

Search Result 125, Processing Time 0.023 seconds

A Research of Nozzle Spray System of Vertical Type Etcher (수직형 식각 장비의 노즐 분사 시스템에 대한 연구)

  • Kim, Jum-Young;Joo, Kang-Wo;Yoon, Jong-Kook;Ryu, Sun-Joong;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • The recent PCB (Printed Circuit Board) wet etcher has been needed to process pattern within $20{\mu}m$ width on a $20{\mu}m$ thick board. A previous PCB etcher can be used with multiple points of roller rolls or slips off a board. Also, the damage of the board by contacting the roller increases the friction defects. A vertical type boards transporting process is developed to solve the problems of boards friction and sagging in a horizontal etcher. In this research, CFD (Computational Fluid Dynamics) method is used to design an improved spray nozzle including the critical part of etcher, and establish the design method. Meanwhile, major spray characteristics are expected in diverse nozzle types and variables. Lastly, diverse simulation results are adapted to design an improved nozzle and spray system.

Study of the Geometry and Wettability of Nozzles for Precise Ejection of High Viscous Liquids (고점도 용액 정밀토출을 위한 노즐 직경 및 표면젖음성 특성 연구)

  • Lee, Sanghyun;Bae, Jae Hyeon;Lee, Sangmin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.123-128
    • /
    • 2021
  • Liquid dispensing systems are extensively used in various industries such as display, semiconductor, and battery manufacturing. Of the many types of dispensers, drop-on-demand piezoelectric jetting systems are widely used in semiconductor industries because of their ability to dispense minute volumes with high precision. However, due to the problems of nozzle clogging and undesirable dispensing behavior in these dispensers, which often result in device failure, the use of highly viscous fluids is limited. Accordingly, we studied the behaviors of droplet formation based on changes in viscosity. The effects of surface energy and the inner diameters of needle-type nozzles were also studied. Results showed that nozzles with lower surface energies reduced the ejection volume of droplets when a smaller nozzle diameter (0.21 mm in this study) was applied. These results indicate that the hydrophobic treatment of nozzle surfaces and the use of smaller nozzle diameters are critical factors enabling the use of highly viscous fluids in precision dispensing applications.

Effect of the Pressure Formation at the Tip of the Melt Delivery Tube in Close-coupled Nozzles in Gas Atomization Process

  • Unal, Rahmi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.477-478
    • /
    • 2006
  • Close-coupled atomizers are of great interest and controlling their performance parameters is critical for metal powder producing and spray forming industries. In this study, designed close-coupled nozzle systems were used to investigate the effect of the nozzle types and protrusion length of the melt delivery tube on the pressure formation at the melt delivery tube tip. The observed metal flow rate was not behaving as what was earlier assumed, namely that, deeper aspiration enhanced metal flow rate. Higher aspiration pressure at the tip of the melt delivery tube increases the stability of atomization process.

  • PDF

Passive control of condensation shock wave in supersonic nozzles (초음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Gwon, Sun-Beom;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3980-3990
    • /
    • 1996
  • When a moist air is rapidly expanded in a supersonic nozzle, nonequilibrium condensation occurs at a supersaturation state. Condensation shock wave appears in the nozzle flow if the releasing latent heat due to condensation goes beyond a critical value. It has been known that self-excited oscillations of the condensation shock wave generate in an air or a steam nozzle flow with a large humidity. In the present study, the passive control technique using porous wall with a cavity underneath was applied to the condensation shock wave. The effects of the passive control on the steady and self-excited condensation shock waves were experimentally investigated by Schlieren visualization and static pressure measurements. The result shows that the present passive control is a useful technique to suppress the self-excited oscillations of condensation shock wave.

Developed Compact Injection Molding Machine for Desktop (탁상용 소형 사출 성형기 개발)

  • Lee, Byung-Ho;Shin, Dong-Hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.257-263
    • /
    • 2018
  • It is a small injection molding machine for table top considering the material heating mechanism and the design and structure stability by securing the mechanism that compresses the inside of the material heating tube by using the electric actuator and by providing space between the body and the material heating tube to reduce heat loss Develop body. An electric actuator suitable for applying pressure to the inside of a material heating tube is a mechanical system composed of a rigid structure. Since a large force is repeatedly applied to the electric actuator and the push rod, the interaction between the moving parts and the dynamic Maximum stress through analysis and prediction of fatigue life of critical parts The pushrod reflects the structural analysis results of the electric actuator and the push rod, and pushes the inside of the material heating tube by the push rod to inject the molten material from the nozzle into the mold. The pushrod operates by the operation of the electric actuator. The material heated by the coil heater is ejected through the nozzle by the pressure of the material heating tube, and the material heating tube and the nozzle are also lowered at the same time as the push rod is lowered, so that the material is closely adhered to the mold. We want to study the completion of the injection.

An Application of the Water Mist System for Underground Utility Tunnel (지하구 미분무수 소화설비 적용에 관한 연구)

  • 김운형;김종훈;박승민;김태수;민인홍;전동일;김상욱
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.66-76
    • /
    • 2002
  • This paper includes new nozzle design, basic design factors of water mist system that minimize a thermal damage of cable causing business interruption and applying underground utility tunnel. A underground concrete structure (2.5 m(H)$\times$2.5 m(W)$\times$25 m(D)) is constructed in order to test a nozzle performance. Under the designing fire scenario, critical thermal damage of cable sheath ($400^{\circ}c$) reached within a 2 minutes with unsuppressed fire, but type 1 nozzle (SMD 470 $\mu{m}$) and type 2 nozzle (SMD 650 $\mu{m}$) control cable temperature below $400^{\circ}c$. A system performance and fundamental design factors; K factor, flow rate, spray angle, size distribution, nozzle pressure, spray density are analyzed and proposed for system optimization.

Study on the Off-design Performance on a Plug Nozzle with Variable Throat Area

  • Azuma, Nobuyuki;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Hongo, Motoyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.644-648
    • /
    • 2004
  • In the present study were examined numerically and experimentally the off-design performance characteristics on an axisymmetric plug nozzle with variable throat area. In this nozzle concept, its throat area can be changed by translating the plug into the axial direction. First, a mixed-expansion plug nozzle, in which two expansion parts are arranged both inside and outside, was designed by means of the method of characteristics. Second, the CFD analysis was verified by the cold-flow wind tunnel test. Third, its performance characteristics were evaluated over a wide range of pressure ratio from half to double throat area through the design point, using the CFD code verified by the wind tunnel tests. It was made clear from the study that not so critical thrust efficiency losses were found and the maximum thrust efficiency loss was at most approximately 5 % under off-design conditions without external flow. This result shows that a plug nozzle can give the altitude compensation even under off-design geometry operations. However, shock waves were observed in the inner expansion part under the doubled throat area operation and thus some thermal problems may be caused on the plug surface. Furthermore, collapse of cell structure on the plug surface was observed with external flow (around Mach number 2.0) as it became lower pressure ratio below the design point and the fact may result in big efficiency loss regardless of geometrical configuration.

  • PDF

Application of artificial neural network for the critical flow prediction of discharge nozzle

  • Xu, Hong;Tang, Tao;Zhang, Baorui;Liu, Yuechan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.834-841
    • /
    • 2022
  • System thermal-hydraulic (STH) code is adopted for nuclear safety analysis. The critical flow model (CFM) is significant for the accuracy of STH simulation. To overcome the defects of current CFMs (low precision or long calculation time), a CFM based on a genetic neural network (GNN) has been developed in this work. To build a powerful model, besides the critical mass flux, the critical pressure and critical quality were also considered in this model, which was seldom considered before. Comparing with the traditional homogeneous equilibrium model (HEM) and the Moody model, the GNN model can predict the critical mass flux with a higher accuracy (approximately 80% of results are within the ±20% error limit); comparing with the Leung model and the Shannak model for critical pressure prediction, the GNN model achieved the best results (more than 80% prediction results within the ±20% error limit). For the critical quality, similar precision is achieved. The GNN-based CFM in this work is meaningful for the STH code CFM development.

An Analytical Study for Critical Mass Flowrate of Compressed Water (압축수의 임계유량에 관한 해석적 연구)

  • 김희동;김재형;한민교;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2003
  • As a compressed water is rapidly expanded through a nozzle, two-phase flow of vapor and liquid is formed in the nozzle due to the flash evaporation. In the present study, critical flow of two-phase fluids is analysized using an Isentropic-Homogeneous-Equilibrium model and a Leung model. Calculation results show that the choke of the two-phase flow can be two different types of continuous and discontinuous chokings. For the stagnation pressure below 10 Mpa it is found that the continuous choking, which is similar to the choking phenomenon of single-phase gas flow, is possible only when the degree of subcooling is less than 10K.