• Title/Summary/Keyword: Critical Factor of Using

Search Result 1,131, Processing Time 0.032 seconds

Development and Verification of the Fog Stability Index for Incheon International Airport based on the Measured Fog Characteristics (인천국제공항의 안개 특성에 따른 안개 안정 지수 FSI(Fog Stability Index) 개발 및 검증)

  • Song, Yunyoung;Yum, Seong Soo
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.443-452
    • /
    • 2013
  • The original Fog Stability Index (FSI) is formulated as FSI=$2(T-T_d)+2(T-T_{850})+WS_{850}$, where $T-T_d$ is dew point deficit (temperature-dew point temperature), $T-T_{850}$ is atmospheric stability measure (temperature-temperature at 850 hPa altitude) and $WS_{850}$ is wind speed at 850 hPa altitude. As a way to improve fog prediction at Incheon International Airport (IIA), we develop the modified FSI for IIA, using the meteorological data at IIA for two years from June 2011 to May 2013, the first one year for development and the second one year for validation. The relative contribution of the three parameters of the modified FSI is 9: 1: 0, indicating that $WS_{850}$ is found to be a non-contributing factor for fog formation at IIA. The critical success index (CSI) of the modified FSI is 0.68. Further development is made to consider the fact that fogs at IIA are highly influenced by advection of moisture from the Yellow Sea. One added parameter after statistical evaluation of the several candidate parameters is the dew point deficit at a buoy over the Yellow Sea. The relative contribution of the four parameters (including the new one) of the newly developed FSI is 10: 2: 0.5: 6.4. The CSI of the new FSI is 0.50. Since the developmental period of one year is too short, the FSI should be refined more as the data are accumulated more.

The System Position from High Firing Rate of Anti-Aircraft Gun system (고발사율 대공포 발사에 따른 체계자세 연구)

  • Hwang, Boo Il;Lee, Boo Hwan;Kim, Chi Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.611-615
    • /
    • 2015
  • Anti-aircraft gun system is used for low-level air defense system and has more than twin guns with high firing rate in order to maximize the capability of defense. Gun's vibration and bullet's variance has a critical effect on accuracy and hit probability of weapon system such as anti-aircraft gun system with high firing rate. Typical mechanism to reduce the amount of vibration and shock during gun-fire process is very important design factor. In this paper, the suspension characteristics of the vehicle are studied for the improvement of isolating performance of gun firing system with high firing rate. Gun fire test for the vehicle is conducted and computational models using Recurdyn and Adams are created based on test results. Through this study, results of computational analysis are compared with the real test results, which includes type, location and quantity of suspension and gun mechanism are selected for anti-aircraft gun. From the result of this study, we could make basic design and consider the proper component of the system such as suspension and gun spring.

The Effects of Feedback Loops on the Network Robustness by using a Random Boolean Network Model (랜덤 불리언 네트워크 모델을 이용한 되먹임 루프가 네트워크 강건성에 미치는 영향)

  • Kwon, Yung-Keun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.138-146
    • /
    • 2010
  • It is well known that many biological networks are very robust against various types of perturbations, but we still do not know the mechanism of robustness. In this paper, we find that there exist a number of feedback loops in a real biological network compared to randomly generated networks. Moreover, we investigate how the topological property affects network robustness. To this end, we properly define the notion of robustness based on a Boolean network model. Through extensive simulations, we show that the Boolean networks create a nearly constant number of fixed-point attractors, while they create a smaller number of limit-cycle attractors as they contain a larger number of feedback loops. In addition, we elucidate that a considerably large basin of a fixed-point attractor is generated in the networks with a large number of feedback loops. All these results imply that the existence of a large number of feedback loops in biological networks can be a critical factor for their robust behaviors.

Influence of Fiber Array Direction on Mechanical Interfacial Properties of Basalt Fiber-reinforced Composites (현무암섬유 섬유 배향에 따른 현무암섬유 강화 복합재료의 기계적 계면특성 영향)

  • Kim, Myung-Seok;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.219-224
    • /
    • 2015
  • In this work, the effect of fiber array direction including $0^{\circ}$, $0^{\circ}/90^{\circ}$, $0^{\circ}/45^{\circ}/-45^{\circ}$ was investigated for mechanical properties of basalt fiber-reinforced composites. Mechanical properties of the composites were studied using interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$) measurements. The cross-section morphologies of basalt fiber-reinforced epoxy composites were observed by scanning electron microscope (SEM). Also, the surface properties of basalt fibers were determined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). From the results, it was observed that acid treated basalt fiber-reinforced composites showed significantly higher mechanical interfacial properties than those of untreated basalt fiber-reinforced composites. These results indicated that the hydroxyl functional groups of basalt fibers lead to the improvement of the mechanical interfacial properties of basalt fibers/epoxy composites in the all array direction.

Effects of Married Child and Parent Characteristics on Intergenerational Residential Proximity (기혼자녀와 부모의 특성이 세대 간 거주근접성에 미치는 영향)

  • Choi, Heejeong;Nam, Boram
    • Journal of Family Relations
    • /
    • v.21 no.1
    • /
    • pp.123-141
    • /
    • 2016
  • Objective: This study examined correlates of residential proximity between parents and non-coresident married children. A majority of existing studies on intergenerational living arrangement has focused on exploring factors that are associated with intergenerational coresidence only, despite an increasing number of parents and children who do not live together but close by. Because residential proximity facilitates frequent contacts and support exchanges between the two generations, it is important to understand its correlates. Method: The data were drawn from first wave of the Korean Longitudinal Study of Ageing (KLoSA, 2006), a nationally representative sample of adults 45 years or older and their spouses. The analytic sample consisted of 3,950 parents with 10,946 non-coresident married children. Both regression with robust standard errors and sibling fixed effects regression models were estimated using the reg and xtreg procedures in STATA. Results: Younger, less depressed, and more physically impaired parents lived closer to at least one of their married children (within a 30-minute distance by public transportation). Fathers (compared to mothers), parents living in cities (compared to those living in rural areas), parents with at least one co-resident child or fewer numbers of married children tended to have at least one married child living nearby. With regard to child characteristics, married children who were less educated, homeowners, and had more children lived closer to their parents. Also, sons (compared to daughters) lived in closer distance to their parents. Conclusion: Overall, findings suggest that intergenerational residential proximity may primarily be motivated by the childcare needs of married children or parents' needs for assistance with functional impairment. Also, the traditional patrilineal norms of intergenerational support may still be a critical factor in residential decisions as observed in the difference between married sons and daughters in proximity to their parents.

Effect of Particle Sphericity on the Rheological Properties of Ti-6Al-4V Powders for Laser Powder Bed Fusion Process (LPBF용 타이타늄 합금 분말의 유변특성에 대한 입자 구형도의 영향)

  • Kim, T.Y.;Kang, M.H.;Kim, J.H.;Hong, J.K.;Yu, J.H.;Lee, J.I.
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.99-109
    • /
    • 2022
  • Powder flowability is critical in additive manufacturing processes, especially for laser powder bed fusion. Many powder features, such as powder size distribution, particle shape, surface roughness, and chemical composition, simultaneously affect the flow properties of a powder; however, the individual effect of each factor on powder flowability has not been comprehensively evaluated. In this study, the impact of particle shape (sphericity) on the rheological properties of Ti-6Al-4V powder is quantified using an FT4 powder rheometer. Dynamic image analysis is conducted on plasma-atomized (PA) and gas-atomized (GA) powders to evaluate their particle sphericity. PA and GA powders exhibit negligible differences in compressibility and permeability tests, but GA powder shows more cohesive behavior, especially in a dynamic state, because lower particle sphericity facilitates interaction between particles during the powder flow. These results provide guidelines for the manufacturing of advanced metal powders with excellent powder flowability for laser powder bed fusion.

Analysis of Priority in the Robotaxi Design Elements : Focusing on Application of AHP Methodology (로보택시 설계 요소 간 우선순위 분석 : AHP 방법론 적용을 중심으로)

  • Juhye Ha;Yeonbi Jeung;Junho Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.179-193
    • /
    • 2023
  • research on user-friendly experience design is crucial to reduce resistance and enhance acceptance of robotaxis. This study analyzes the prioritization of design factors in robotaxi systems and provides design guidelines based on user experience. Using the AHP(Analytic Hierarchy Process) technique, users' perceived importance of four primary design factors and sixteen 16 sub-design elements were assessed, and comfort and safety were top priorities. The results showed that the artificial intelligence agent was the most critical design factor, followed by driving guidance information, interior design, and exterior design. These findings offer valuable insights for robotaxi professionals, and could assist in informed decision-making and creating user-centered design guidelines.

Hazards Caused by UV Rays of Xenon Light Based High Performance Solar Simulators

  • Dibowski, Gerd;Esser, Kai
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.237-245
    • /
    • 2017
  • Background: Solar furnaces are used worldwide to conduct experiments to demonstrate the feasibility of solar-chemical processes with the aid of concentrated sunlight, or to qualify high temperature-resistant components. In recent years, high-flux solar simulators (HFSSs) based on short-arc xenon lamps are more frequently used. The emitted spectrum is very similar to natural sunlight but with dangerous portions of ultraviolet light as well. Due to special benefits of solar simulators the increase of construction activity for HFSS can be observed worldwide. Hence, it is quite important to protect employees against serious injuries caused by ultraviolet radiation (UVR) in a range of 100 nm to 400 nm. Methods: The UV measurements were made at the German Aerospace Center (DLR), Cologne and Paul-Scherrer-Institute (PSI), Switzerland, during normal operations of the HFSS, with a high-precision UV-A/B radiometer using different experiment setups at different power levels. Thus, the measurement results represent UV emissions which are typical when operating a HFSS. Therefore, the biological effects on people exposed to UVR was investigated systematically to identify the existing hazard potential. Results: It should be noted that the permissible workplace exposure limits for UV emissions significantly exceeded after a few seconds. One critical value was strongly exceeded by a factor of 770. Conclusion: The prevention of emissions must first and foremost be carried out by structural measures. Furthermore, unambiguous protocols have to be defined and compliance must be monitored. For short-term activities in the hazard area, measures for the protection of eyes and skin must be taken.

Analytical Study on Interface Debonding of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet(CFS) (탄소섬유쉬트로 보강된 철근콘크리트보의 계면박리에 대한 해석적 연구)

  • Sim, Jong-Sung;Bae, In-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.177-186
    • /
    • 1999
  • The purpose of this study is to analyze the interface debonding of RC beams strengthened by carbon fiber sheet(CFS). The behavior of damaged RC beams strengthened with CFS is analytically investigated next using linear elastic fracture mechanics(LEFM) approach and the finite element method. The study includes an investigation of the separation mode by interface fracture of the strengthening materials due to the interfacial shear and normal stresses. The numerical method is presented to obtain the value of interfacial fracture parameter such as the strain energy release rate. Based on the results of this study, it is found that the critical case occurs when the interfacial cracks occur within a short region of the flexural crack. The CFS strengthening has not an adequate factor of safety against interfacial debonding of CFS. Furthermore, for the thicknesses of the adhesive studied[1mm~3mm], it is no noticeable effect on the strain energy release rate.

Optimal Operation Schedule of Semi-Fixed PV System and Its Effect on PV Power Generation Efficiency (반고정식 PV 시스템의 운영 스케줄 도출 및 그에 따른 발전 효율 변화 고찰)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.69-77
    • /
    • 2017
  • The amount of solar irradiation obtained by a photovoltaic (PV) solar panel is the major factor determining the power generated by a PV system, and the array tilt angle is critical for maximizing panel radiation acquisition. There are three types of PV systems based on the manner of setting the array tilt angle: fixed, semi-fixed, and tracking systems. A fixed system cannot respond to seasonal solar altitude angle changes, and therefore cannot absorb the maximum available solar radiation. The tracking system continually adjusts the tilt angle to absorb the maximum available radiation, but requires additional cost for equipment, installation, operation, and maintenance. The semi-fixed system is only adjusted periodically (usually seasonally) to obtain more energy than a fixed system at an overall cost that is less than a tracking system. To maximize semi-fixed system efficiency, determining the optimal tilt angle adjustment schedule are required. In this research, we conducted a simulation to derive an optimal operation schedule for a semi-fixed system in Seoul, Korea (latitude $37.5^{\circ}$). We implemented a solar radiation acquisition model and PV genereation model on MATLAB. The optimal operation schedule was derived by changing the number of tilt angle adjustments throughout a year using a Dynamic Algorithm. The results show that adjusting the tilt angle 4 times a year was the most appropriate. and then, generation amount of PV system increased 2.80% compared with the fixed system. This corresponds to 99% compared to daily adjustment model. This increase would be quite valid as the PV system installation area increased.