DOI QR코드

DOI QR Code

Hazards Caused by UV Rays of Xenon Light Based High Performance Solar Simulators

  • Dibowski, Gerd (German Aerospace Center (DLR e.V.), Institute of Solar Research) ;
  • Esser, Kai (German Aerospace Center (DLR e.V.), Institute of Solar Research)
  • Received : 2015.12.23
  • Accepted : 2016.12.13
  • Published : 2017.09.30

Abstract

Background: Solar furnaces are used worldwide to conduct experiments to demonstrate the feasibility of solar-chemical processes with the aid of concentrated sunlight, or to qualify high temperature-resistant components. In recent years, high-flux solar simulators (HFSSs) based on short-arc xenon lamps are more frequently used. The emitted spectrum is very similar to natural sunlight but with dangerous portions of ultraviolet light as well. Due to special benefits of solar simulators the increase of construction activity for HFSS can be observed worldwide. Hence, it is quite important to protect employees against serious injuries caused by ultraviolet radiation (UVR) in a range of 100 nm to 400 nm. Methods: The UV measurements were made at the German Aerospace Center (DLR), Cologne and Paul-Scherrer-Institute (PSI), Switzerland, during normal operations of the HFSS, with a high-precision UV-A/B radiometer using different experiment setups at different power levels. Thus, the measurement results represent UV emissions which are typical when operating a HFSS. Therefore, the biological effects on people exposed to UVR was investigated systematically to identify the existing hazard potential. Results: It should be noted that the permissible workplace exposure limits for UV emissions significantly exceeded after a few seconds. One critical value was strongly exceeded by a factor of 770. Conclusion: The prevention of emissions must first and foremost be carried out by structural measures. Furthermore, unambiguous protocols have to be defined and compliance must be monitored. For short-term activities in the hazard area, measures for the protection of eyes and skin must be taken.

Keywords

References

  1. Dibowski G, Neumann A, Rietbrock P, Willsch C, Sack JP, Funken KH. DLRs new high-flux solar simulator-fundamentals, technology, application. Institute of Solar Energy. Proceedings of the 10th Solar Colloquium, vol. 11. Cologne, Germany; 2007. p. 67-8.
  2. Wieghardt K, Funken KH, Dibowski G, Hoffschmidt B, Laaber D, Hilger P, Esser K. Synlight -The world's largest artificial sun. Proceedings of the 21st Solar Paces Conference, vol 21. Cape Town, South Africa; 2015. p. 153-7.
  3. Bader R, Haussener S, Lipinski W. A 45 kWe multi-source high-flux solar simulator. Sol Energy Eng 2014;137:12-21.
  4. Gill R, Bush E, Haueter P, Loutzenhiser P. Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns. Rev Sci Instrum 2015;86:125107. https://doi.org/10.1063/1.4936976
  5. Li J, Gonzalez-Aguilar J, Romero MH. Line-concentrating flux analysis of 42 kW high-flux solar simulator. International Conference on Concentrating Solar Power and Chemical Energy Systems [Internet]. SolarPACES; 2014. Available from: http://www.solarpaces.org/press-room.
  6. Bader R, Leveque G, Haussener S, Lipinski W. High-flux solar simulator technology. OSA Light, Energy and the Environment Congress, Leipzig, 14-17 November 2016. OCIS codes: (350.6050) Solar energy; (230.6080) Sources.
  7. Li J, Gonzalez-Aguilar J, Perez-Rabago C, Zeaiter H, Romero HM. Optical analysis of hexagonal 42kWe high-flux solar simulator. Energ Proc 2014;57:590-6. https://doi.org/10.1016/j.egypro.2014.10.213
  8. Erickson B, Petrasch J. High Flux Solar Simulator for the Investigation of Solar Thermo-chemical Cycles at Low Pressures [Internet]. Poster presentation at FESC Summit, Orlando, USA; 2010. Available from: http://floridaenergy.ufl.edu/wp-content/uploads/Solar-Fuels-for-Thermochemical-PETRASCH.pdf.
  9. Swerdlow AJ. Health Effects from Ultraviolet Radiation. Chilton, Oxfordshire, Great Britain: Report of the Advisory Group on non-ionizing Radiation of the National Radiological Protection Board NRPB [Internet]. 2002. 282 p. [cited 2014 Jan 23]. Available from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/414185/NRPB_Doc_series_vol13_no1.pdf
  10. CIE Commission International de lEclairage. Erythemale Referenzwirkungsfunktion und standardisierte Erythemdosis. Standardization of the terms UV-A1, UV-A2 and UV-B. Vienna; 1999. Report CIE-134/1. 55 p.
  11. EU-Richtlinie 2006/25/EG uber Mindestvorschriften zum Schutz von Sicherheit und Gesundheit der Arbeitnehmer vor der Gefahrdung durch physikalische Einwirkungen (künstliche optische Strahlung) [EU Directive 2006/25/EC on minimum requirements for the protection of safety and health of employees from the risks arising from physical impacts (artificial optical radiation)]. Bruxelles: European Parliament and Council. 2006. Guideline 89/391/EWG: 38-44. 20 p. [in German].
  12. Aengenvoort B, Schwass D. BGIA-Report 3/2007, UV-Strahlenexpositionen an Arbeitsplatzen. Institut fur Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung [UV radiation exposure to working places. Institute for Occupational Safety and Health of the German Social Accident Insurance]. Sankt Augustin, Germany; 2007. 44 p. [in German].
  13. Wang F, Gao Q, Hu L, Gao N, Ge T, Yu J, Liu Y. Risk of Eye Damage from the Wavelength-Dependent Biologically Effective UVB Spectrum Irradiances [Internet]. Plos One, USA; 2012. [cited 2015 Apr 11]. Available from: http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0052259.
  14. Alxneit I, Dibowski G. Solar Simulator Evaluation Report. EU-Project SFERA Solar Facilities for the European Research Area. Font Romeu Odeillo. France; 2011. Deliverable 12.5. 35 p, SFERA, funded by the European Commission under Contract No. 385228296.
  15. Siekmann H. Carcinogenic potential of solar radiation and artificial sources of UV radiation. Institut fur Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA) [Institute for Occupational Safety and Health of the German Social Accident Insurance] [Internet]. Sankt Augustin; Germany; 2011. 8 p. [cited 2016 Feb 13]. Available from: http://www.dguv.de/medien/ifa/en/fac/strahl/pdf/carcinogenic_potential_uv.pdf
  16. ICNIRP (IRPA) International Commission on Non-Ionizing Radiation Protection of the International. Radiation Protection Association. 2004. Guidelines on Limits of Exposure to Ultraviolet Radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys 2004;87:171-86. https://doi.org/10.1097/00004032-200408000-00006
  17. Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. University of Sydney. J Photochem Photobiol B 2001;63:8-18. https://doi.org/10.1016/S1011-1344(01)00198-1
  18. DIN EN 14255-1. Messung und Beurteilung von personenbezogenen Expositionen gegenuber inkoharenter optischer Strahlung. Teil 1: von kunstlichen Quellen am Arbeitsplatz emittierte ultraviolette Strahlung. DIN Deutsches Institut fur Normung e.V. [Measurement and assessment of personal exposures to incoherent optical radiation. Part 1: ultraviolet radiation emitted by artificial sources at the workplace. DIN German Institute for Standardization]. Beuth Verlag Berlin; 2005. 33 p. [in German].
  19. BGl 5006: Expositionsgrenzwerte fur kunstliche optische Strahlung. 2004. Berufsgenossenschaft der Feinmechanik und Elektrotechnik. Fachausschuss "Elektrotechnik" der DGUV [Exposure limits for artificial optical radiation. Employer's Liability Insurance Association for Precision Mechanics and Electrical Engineering. Technical Committee "Electrical engineering" of DGUV]. Cologne; 2004. 63 p. [in German].
  20. Leveque G, Bader R, Lipinski W, Haussener S. Experimental and numerical characterization of a new 45 kWel multisource high-flux solar simulator. Opt Express Oct. 2016;24(22):1360-73. https://doi.org/10.1364/OE.24.0A1360

Cited by

  1. Design and Implementation of LED Solar Simulator vol.15, pp.None, 2017, https://doi.org/10.37394/232016.2020.15.8
  2. Design and Validation of an Adjustable Large-Scale Solar Simulator vol.11, pp.4, 2017, https://doi.org/10.3390/app11041964