• 제목/요약/키워드: Criteria for modeling accuracy

검색결과 57건 처리시간 0.032초

Preissmann 기법에 의한 1차원 부정류의 해석 (An Analysis of Unsteady Flow with Preissmann Scheme)

  • 이종태
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1982년도 제24회 수공학 연구발표회 논문초록집
    • /
    • pp.27-32
    • /
    • 1982
  • 본 연구에서는 1차원 부정류를 나타내는 Sanit Venant의 편미분방정식을 Preissmann의 Implicit 기법에 의하여 유한차분방정식을 구성한 후에 Double sweep알고리즘을 적용하여 해석하는 문제를 다루었으며, 분 차분방정식의 안정성과 정도를 검토하였고 $$, $$및 Chezy계수 등의 영향을 1차원 Seiche운동에 관한 수치실험을 통하여 분석하여 보았는 바, 그내용은 다음과 같다. 1. 보조관계식을 활용함으로써 Double sweep알고리즘의 적용이 가능하였다. 2. 해석결과에 가장 큰 영향을 미치는 인자는 $$, $$및 Chezy계수인 바, 높은 정도의 결과를 얻기 위해서 $$은 1보다 너무 큰 값은 피해야 될 것이며, $$의 적합한 범위는 0.6<$$<1.0이였다. 3. 본 모형을 1차원 장파의 전파에 적용하였던 바 안정된 결과를 보였다.

  • PDF

측정데이터의 효율적 감소를 위한 De Iaunay 삼각형 분할의 적용 (Delaunay triangulation for efficient reduction of measured point data)

  • 허성민;김호찬;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2001
  • Reverse engineering has been widely used for the shape reconstruction of an object without CAD data and it includes some steps such as scanning of a clay or wood model, and generating some manufacturing data in an STL file. A new approach to remove point data with Delaunay triangulation is introduced to deal with the size problems of STL file and the difficulties in the operation of RP process. This approach can be used to reduce a number of measuring data from laser scanner within a specified tolerance, thus it can avoid the time for handing point data during modeling process and the time for verifying and slicing STL model during RP process. Developed software enables the user to specify the criteria for the selection of group of triangles either by the angle between triangles or the percentage of triangles reduced, and thus RP models with accuracy will be helpful to automated process.

  • PDF

재료적 비선형을 고려한 Ρ-Version 유한요소해석 (Ρ-Version Finite Element Analysis for Material Nonlinearity)

  • 정우성;홍종현;우광성;신영식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.71-78
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity, the associated flow rule, and von-Mises yield criteria. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the center cracked plate under tensile loading. Those results are compared with the there cal solutions and the numerical solutions of ADINA software.

  • PDF

Concrete fragmentation modeling using coupled finite element - meshfree formulations

  • Wu, Youcai;Choi, Hyung-Jin;Crawford, John E.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.173-195
    • /
    • 2013
  • Meshfree methods are known to have the capability to overcome the strict regularization requirements and numerical instabilities that encumber the finite element method (FEM) in large deformation problems. They are also more naturally suited for problems involving material perforation and fragmentation. To take advantage of the high efficiency of FEM and high accuracy of meshfree methods, a coupled finite element (FE) and reproducing kernel (RK, one of the meshfree approximations) formulation is described in this paper. The coupling of FE and RK approximation is implemented in an evolutionary fashion, where the extent and location of the evolution is dependent on a triggering criteria provided by the material constitutive laws. To enhance computational efficiency, Gauss quadrature is applied to integrate both FE and RK domains so that no state variable transfer is required when mesh conversion is performed. To control the hourglassing that might occur with 1-point integrated hexahedral grids, viscous type hourglass control is implemented. Meanwhile, the FEM version of the K&C concrete (KCC) model was modified to make it applicable in both FE and RK formulations. Results using this code and the KCC model are shown for the modeling of concrete responses under quasi-static, blast and impact loadings. These analyses demonstrate that fragmentation phenomena of the sort commonly observed under blast and impact loadings of concrete structures was able to be realistically captured by the coupled formulation.

Optimal Density Assignment to 2D Diode Array Detector for Different Dose Calculation Algorithms in Patient Specific VMAT QA

  • Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • 제42권1호
    • /
    • pp.9-15
    • /
    • 2017
  • Background: The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Materials and Methods: Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. Results and Discussion: For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were $97.2%{\pm}2.3%$, and $99.4%{\pm}1.1%$, respectively while those for 15 MV were $98.5%{\pm}0.85%$ and $99.8%{\pm}0.2%$, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. Conclusion: The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.

선체보강판의 해석영역에 따른 최종강도거동에 관한 연구 (A Study on the Ultimate Strength Behavior according to Analysis Boundary at Stiffened Plate)

  • 박주신;고재용
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.262-269
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of analysis range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • 한국지반환경공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

Pareto RBF network ensemble using multi-objective evolutionary computation

  • Kondo, Nobuhiko;Hatanaka, Toshiharu;Uosaki, Katsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.925-930
    • /
    • 2005
  • In this paper, evolutionary multi-objective selection method of RBF networks structure is considered. The candidates of RBF network structure are encoded into the chromosomes in GAs. Then, they evolve toward Pareto-optimal front defined by several objective functions concerning with model accuracy and model complexity. An ensemble network constructed by such Pareto-optimal models is also considered in this paper. Some numerical simulation results indicate that the ensemble network is much robust for the case of existence of outliers or lack of data, than one selected in the sense of information criteria.

  • PDF

선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구 (A Study on the Ultimate Strength Behavior according to Modeling Range at the Stiffened Plate)

  • 박주신;고재용
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2004년도 추계학술발표회
    • /
    • pp.137-141
    • /
    • 2004
  • 선체구조는 기본적으로 판부재의 조합으로 이루어져 있으며, 이러한 판부재는 하중분담 능력에 따라서 전체적인 구조의 강도에 른 영향을 미치게 된다. 또한 각 구조적인 판부재는 개별적으로 거동하는 것이 아니라 전체적인 구조와 연속적으로 작용하게 된다. 선박구조물은 강구조물과 해양구조물에서와는 달리 고정도의 부정정 구조물로 구성되어 있으며 이러한 구조물의 거동을 정확하게 규명하기 위해서는 복잡하게 구성되어 있는 선체판넬 구조를 단순화시켜서 해석에 적용하여야 한다. 본 연구에서는 선체판넬구조의 모델링영역에 따른 최종강도 거동의 차이를 분석하여, 가장 합리적인 모델링영역을 도출하고자 한다. 사용된 해석모델은 실제 상선의 이중저구조에서 사용되는 판넬에서 채택하였으며, 유한요소해석 모델링 시 3가지 서로 다른 해석영역을 제시하여 적요하였다. 본 연구의 목적은 일축압축하중이 작용하는 보강판넬구조에서 서로 다른 모델링영역을 갖는 보강판에서의 최종강도 거동을 분석하여 최적의 해석모델링 영역을 찾는 것이다.

  • PDF

Allometric Modeling for Leaf Area and Leaf Biomass Estimation of Swietenia mahagoni in the North-eastern Region of Bangladesh

  • Das, Niamjit
    • Journal of Forest and Environmental Science
    • /
    • 제30권4호
    • /
    • pp.351-361
    • /
    • 2014
  • Leaf area ($A_0$) and leaf biomass ($M_0$) estimation are significant prerequisites to studying tree physiological processes and modeling in the forest ecosystem. The objective of this study was to develop allometric models for estimating $A_0$ and $M_0$ of Swietenia mahagoni L. from different tree parameters such as DBH and tree height of mahogany plantations in the northeastern region of Bangladesh. A total of 850 healthy and well formed trees were selected randomly for sampling in the five study sites. Then, twenty two models were developed based on different statistical criteria that propose reliable and accurate models for estimating the $A_0$ and $M_0$ using non-destructive measurements. The results exposed that model iv and xv were selected on a single predictor of DBH and showed more statistically accuracy than other models. The selected models were also validated with an additional test data set on the basis of linear regression and t-test for mean difference between observed and predicted values. After that, a comparison between the best logarithmic and non-linear allometric model shows that the non-linear model produces systematic biases and underestimates $A_0$ and $M_0$ for larger trees. As a result, it showed that the bias-corrected logarithmic model iv and xv can be used to help quantify forest structure and functions, particularly valuable in future research for estimating $A_0$ and $M_0$ of S. mahagoni in this region.