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ABSTRACT : This paper proposes an extended model evaluation method that considers not only the model performance but also the 
model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave 
models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and 
assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models 
provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent 
the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the 
applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and 
local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; 
however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. 
This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural 
uncertainty, the model is likely to suffer from parameter uncertainty.
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1. Introduction

A primary objective of hydrologic modelers is to identify an 

appropriate hydrologic model and optimal parameter set that 

are suitable for the modeling purpose, catchment characteristics, 

and available data (Wagener, 2003; Wagener et al., 2004). Beven 

(2001) reviewed the basic criteria for model choice, summarized 

as follows: 1) model availability; 2) model predictability for 

hydrological variables; 3) model reliability (i.e., whether the 

assumptions underlying the model structures are understandable 

according to the modeler’s expertise/experience); and 4) model 

suitability within the time and cost constraints of the modeling 

objectives. However, he warned that all available models will 

be easily rejected by these evaluative criteria because of 

inadequate model conceptualization and insufficient field data 

to fully support the model parameters. Therefore, a more 

effective and practical guideline is necessary to enable modelers 

to identify the best model providing more accurate and less 

uncertain prediction results.

Conventional model evaluation usually judges models in 

a one-dimensional manner based only on model performance 

and does not consider various uncertainty sources that propagate 

into the prediction results. As a result, many different model 

structures are often judged as equally good representations 

of catchment hydrological responses even though some models 

are overly simplified (Refsgaard & Knudsen, 1996; Uhlenbrook 

et al., 1999; Beven & Freer, 2001). Moreover, numerous 

plausible parameter combinations can exist within a feasible 

parameter space and provide identically good model performance 

measures or indistinguishable hydrographs in rainfall-runoff 

modeling (Beven & Binley, 1992). This phenomenon, called 

“equifinality” (Beven & Binley, 1992; Beven, 2006), has been 

recognized as a modeling issue by hydrological modeling 

communities such as the International Working Group on 

Uncertainty Analysis in Hydrologic Modeling, a part of the 

Predictions in Ungauged Basins (PUB) initiative of the Inter-

national Water Management Institute. Beven (2001, 2002) 

outlined an alternative strategy for model identification con-

sidering uncertainty, which Wagener et al. (2001, 2003a, 2004) 

then developed by incorporating a parsimonious model with 

uncertainty analysis tools such as the multi-objective complex 

evolution method (MOCOM, Yapo et al., 1998) and dynamic 
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Fig. 1. Schematic diagram of the extended model evaluation under 

uncertainty in rainfall-runoff modeling

identifiability analysis (DYNIA, Wagener et al., 2003b). Wagner 

and colleagues abandoned the notion of “uniqueness”, which 

aims to obtain a true representation of a hydrological system 

by calibration and validation steps. Instead, they emphasized 

the need for enhanced model identification to provide more 

information for either confirming possible predictor(s) or 

rejecting inadequate one(s).

In this regard, this paper proposes an extended model 

evaluation framework under uncertainty in rainfall-runoff 

modeling for identifying a more reliable model. The new 

framework follows the basic concepts of uncertainty proposed 

by Beven (2002) and Wagener & Gupta (2005). It admits 

numerous plausible representations providing identically good 

model performance measures, while newly developed criteria 

are used to assess other inherent model characteristics related 

to structural and parameter uncertainties. We prepared seven 

different rainfall-runoff models ranging from a simple lumped 

model to sophisticated distributed models and then evaluated 

the models with respect to model performance, model structural 

stability, and parameter identifiability. A highly ranked model 

by these criteria is structurally stable, shows less parameter 

uncertainty, and ensures accurate prediction results. This 

evaluation process may provide a more useful guideline for 

selecting a suitable model for various rainfall-runoff model 

applications. Section 2 introduces the concept underlying the 

new method of model identification under uncertainty, and 

Section 3 describes the models used in this study. Section 4 

introduces the new evaluative criteria in detail and addresses 

the comparative results. Finally, we summarize our major 

conclusions in Section 5.

2. Concept of Extended Model 

Evaluation under Uncertainty

Fig. 1 illustrates the extended model evaluation under 

uncertainty. Initially, a set of rainfall-runoff models, with 

different representations of rainfall-runoff processes and spatial 

topography, is prepared for model evaluation. Here, all the 

models are assumed to be potentially available simulators, 

unless obvious evidence indicates that a model should be 

rejected.

Three different evaluative criteria are then applied to the 

competing models. The first (or the most fundamental) measure 

of model evaluation is the model performance index (MPI), 

which assesses whether the models are capable of accurately 

simulating the observed streamflow in terms of local response 

modes such as low and high flows. The second criterion is 

the model structural stability index (MSSI) for assessing how 

precisely the models can represent the local response modes 

regardless of given objective functions. More stable models 

can provide more constant and accurate simulation results 

with respect to various local behaviors irrespective of the 

applied objective functions. The last measure is the model 

parameter identifiability index (MPII) for evaluating whether 

the model parameters are well identified within a predefined 

feasible parameter space. The models showing higher parameter 

identifiability indicate less parameter uncertainty during model 

calibration and guarantee increased prediction accuracy. The 

resulting criteria values from the extended model evaluation 
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Fig. 2. (a) The Kamishiiba catchment and modeled drainage networks of (b) 250-m, (c) 500-m, and (d) 1-km DEMs for distributed 

rainfall-runoff modeling

should give some objective basis by which to search for a 

model that balances prediction accuracy, structural stability, 

and parameter uncertainty.

Fig. 1 also presents the schematic model space with respect 

to the three proposed evaluative criteria; the plus marks indicate 

“good” results while the minus marks indicate “bad” results. 

In this model space, each box indicates candidate of acceptable 

rainfall-runoff models. The black box indicates the best model 

leading to good model performance, stable model structure, 

and high parameter identifiability, while the dark gray box 

on the bottom left in the three-dimensional model space is 

the “nonideal” model. As shown in Fig. 1, the new model 

evaluation process emphasizes that one-dimensional model 

evaluation, which is based only on a single criterion, is likely 

to result in many possible predictors. For example, both Model 

N (the ideal model) and Model N-1 can provide equally 

good MPI values, but Model N-1 is worse than Model N 

in terms of both MSSI and MPII values. Additional criteria in 

the proposed model evaluation procedure can provide richer 

information, enabling modelers to identify a balanced model, 

which can lead to a more accurate and less uncertain prediction 

result, among a number of possible simulators.

A model structure with the best balance (or the final selected 

model) may provide an assurance of good parameter identifi-

ability. However, it is not completely free from parameter 

uncertainty. This means that such a model has plausible (or 

behavioral) parameter sets that yield similarly good outcomes. 

In the three-dimensional model space of Fig. 1, the light gray 

elliptical regions of each box (i.e., Pi,j is a model parameter, 

where i is the number of parameters to be calibrated and 

j is the number of possible model candidates) schematically 

indicate the constrained parameter spaces after model calibration. 

All parameter sets within these regions provide objective 

function values as good as the global optimal sets marked 

by the symbol x. Note that each model perhaps has different 

parameter dimensions, but for visualization purposes, the para-

meter spaces of all models are represented in three dimensions. 

The behavioral parameters (inside the constrained parameter 

space) sometimes lose physical meaning numerically with 

respect to their value, but they are meaningful in terms of 

model predictions. As a consequence, the surviving model with 

its behavior parameter sets should be retained until parameter 

sets that violate new evaluative criteria are found. Then, the 

retained parameter sets are used for runoff prediction. The 

prediction results of the selected model are therefore not a 

single output sequence but a set of hydrographs.

3. Rainfall-runoff Models used in this 

Study

In this study, three different types of rainfall-runoff models, 

from a simple lumped model to distributed kinematic wave 

models, were developed under an object-oriented hydrological 

modeling system (Takasao et al., 1996; Ichikawa et al., 2000). 

Moreover, three different spatial resolutions of a digital elevation 

model (DEM) were used to investigate the scale effect on 

both model performance and uncertainty assessment in dis-

tributed rainfall-runoff modeling. The following subsections 

provide more details of the models. All the models were 
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Fig. 3. Schematic model structure and the stage-discharge 

relationship of KWMSS1

Fig. 4. Schematic model structure and the extended stage- 

discharge relationship of KWMSS2

applied to the Kamishiiba catchment in Kyushu, Japan, as 

illustrated in Fig. 2 (a). The drainage networks of the study 

site were represented by DEMs with 250-m, 500-m, and 1-km 

resolutions for distributed rainfall-runoff modeling. The study 

area is upstream from Kamishiiba Dam and covers an area of 

211 km2. The catchment has hilly topography, with elevations 

varying from 431 to 1,720 m. Most of the land is forested. 

Observed discharge data, converted from the water level of 

the dam inflow with 10-min temporal resolution, and radar 

rainfall data observed from the Ejiroyama X-band radar, 

covering a radius of 128 km, are available for this area. 

Spatially distributed rainfall data for the historical flood event 

caused by Typhoon No. 9 (15-19 September 1997) were used 

for both the rainfall-runoff simulations and a multifarious 

model evaluation; the radar rainfall data has 1 km × 1 km 

spatial and 10-min temporal resolutions. 

3.1 Storage Function Method (SFM)

The SFM is a simple nonlinear reservoir model that is 

widely used for practical engineering applications in Japan 

despite its simplicity. The form of SFM is expressed as

( - ) - , p
e l

dS r t T q S kq
dt

= =  (1)

,
,

SA
e

SA

f r if r R
r

r if r R
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∑
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where S [m3] is the water storage, re [mm/hr] is the effective 

rainfall intensity, r [mm/hr] is the rainfall intensity, q [m3/hr] is 

the runoff, t is time, k [-] is the storage coefficient, p [-] is 

the coefficient of nonlinearity, f [-] is the primary runoff ratio, 

Tl [hr] is the lag time, and RSA [mm] is the accumulated 

saturated rainfall. Four parameters (k, p, f, and RSA) need to 

be optimized in SFM.

3.2 Kinematic Wave Method for Subsurface and 

Surface Runoff with a Single Threshold 

(KWMSS1)

In this model, the catchment surface is assumed to be 

covered with a highly permeable stratum called the “A-layer” 

with uniform thickness D [m]. The depth, d [m], is referred 

to as a threshold to account for the surface and subsurface 

flow, and is defined as d = Dγ, where γ is the porosity of 

the A-layer (see Fig. 3). Takasao & Shiiba (1988) proposed 

the following piecewise relationship between water depth h 

[m] and discharge per unit width q [m2/s]:

, 0
( ) ,α
≤ ≤⎧

= ⎨ + − <⎩
m

vh h d
q

vh h d d h  (3)

where v = kdi,   = /i n  [m1/3s-1], v [m/s] is the velocity 

through the A-layer, i is the slope gradient, kd [m/s] is the 

saturated hydraulic conductivity, and n [m-1/3s] is Manning’s 

roughness coefficient; if the overland flow follows Manning’s 

resistance law, then m = 5/3. Three model parameters (n, 

kd, and d) must be adjusted to the observed data.

3.3 Kinematic Wave Method for Subsurface and 

Surface Runoff with Double Thresholds 

(KWMSS2)

Like the preceding KWMSS1, this model also assumes that 

a catchment is covered with a permeable soil layer. However, 

instead of the single threshold, d is partitioned into three 

flow components by two thresholds, the depth dc [m] corres-

ponding to the water content in the capillary pores, and the 

depth ds [m] corresponding to the maximum water content, 
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as illustrated in Fig. 4. The depth of the capillary pore layer 

is referred to as the domain for simulation of unsaturated 

flow. After the water depth reaches it, the capillary pore layer 

is assumed to be saturated and gravity flow occurs in the 

non-capillary pore layer. Finally, when the water depth begins 

to exceed total subsurface water capacity, surface flow occurs. 

Tachikawa et al. (2004) modified the relationship between 

depth and flow to account for surface and subsurface runoff 

systems and then proposed the following extended stage- 

discharge relationship:

( / ) , 0
( ),
( ) ( ) ,

β
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⎧ ≤ ≤
⎪= + − < ≤⎨
⎪ + − + − <⎩
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where vc = kci [m/s], va = kai [m/s], kc = ka / β [m/s], 

  = /i n  [m1/3s-1], kc [m/s] is the hydraulic conductivity of the 

capillary soil layer, and ka [m/s] is the hydraulic conductivity 

of the non-capillary soil layer. There are five parameters (n, 

ka, ds, dc, and β) that need to be calibrated in KWMSS2.

The flow rate of KWMSS1 and KWMSS2 is calculated 

by the stage-discharge relationships written as Eqs. (3) and 

(4), combined with the continuity equation, Eq. (5), assuming 

that the hydraulic gradient is parallel to the slope in a hilly 

area:

( )h q r t
t x

∂ ∂+ =
∂ ∂  (5)

where r(t) [mm/s] indicates the lateral inflow, given here as 

rainfall over the catchment.

In both kinematic wave models, rainfall over the catchment 

is directly added to both the subsurface flow and surface 

flow, so that it is represented by the water depth, h. The 

stage-discharge relationship stated above effectively produces 

a lag time when modeling the subsurface flow without adding 

a vertical infiltration model to the rainfall-runoff models.

As discussed above, one simple nonlinear reservoir model 

(SFM) and six distributed models (KWMSS1 with 250-m, 

500-m, and 1-km DEMs and KWMSS2 with 250-m, 500-m, 

and 1-km DEMs) were evaluated under the new model evalu-

ation framework.

4. Model Evaluation with Three Different 

Types of Criteria

4.1 Model Evaluation with the Model Performance 

Index (MPI)

Model performance is a principal benchmark not only for 

selecting a model but also for presenting convincing model 

results to other hydrologists or stakeholders. Performance is 

typically judged using an objective function that is minimized 

or maximized according to modeling purposes. A wide range 

of statistical and hydrological objective functions is available. 

Boyle et al. (2000, 2001) pointed out that overall measures 

such as the root mean-square error (RMSE) could capture 

global behavior, but such aggregation of error would likely 

decrease the amount of information in the data such that 

various local behaviors involved in hydrological responses 

could be overlooked. Therefore, they recommended that the 

runoff time series be partitioned into specific response periods 

to investigate the influence of individual model parameters 

on both global and local behaviors. Wagener et al. (2003a) 

also demonstrated that while some models could reproduce 

specific local behaviors (e.g., peak or rising/recession flows), 

their global behaviors (i.e., overall model performances) were 

not acceptable. 

To assess model performance by the new model evaluation 

framework, we partitioned hydrographs into two components: 

high flow and low flow periods divided by the threshold, 

315 m3/s, defined as the mean value of the observed discharge 

data (see Fig. 5 (a)). The performances of each model structure 

were assessed using the Nash-Sutcliffe coefficient (NSC) for 

the two periods; the two measures were then averaged to 

obtain the MPI, defined as
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Table 1. MPI values for each model structure: evaluation of global and local behaviors

Model
No. 
parameter

SFM
KWMSS1 KWMSS2

250 m 500 m 1 km 250 m 500 m 1 km

NSCLow 0.944 0.885 0.885 0.812 0.993 0.993 0.974
NSCHigh 0.987 0.969 0.969 0.967 0.993 0.992 0.983

MPI 0.977 0.95 0.95 0.931 0.993 0.993 0.981

Fig. 5. Model performances of (a) SFM, (b) KWMSS1, and (c) KWMSS2 

based on different DEMs with resolutions ranging from 

250-m to 1-km

where qobs(t) is the observed discharge at time step t, qsim(t) 

is the simulated discharge, and 
High

obsq and 
Low

obsq  are the mean 

observed discharge over simulation periods of lengths NHigh 

and NLow, respectively.

Here, all models were calibrated using the shuffled complex 

evolution algorithm developed at the University of Arizona 

(SCE-UA; Duan et al., 1992; 1993; 1994) with the objective 

function of simple least-squares (SLS), expressed as 

2

1
SLS ( ( ))

N obs
t t

t
q q θ

=
= −∑  (9)

where qt
obs is the observed streamflow value at time t, qt(θ) 

is the simulated streamflow value at time t using parameter 

set θ, and N is the number of flow values available.

The SCE-UA is a single-objective optimization method 

designed to handle the high parameter dimensionality encoun-

tered in the calibration of a nonlinear hydrologic simulation 

model. Numerous researchers have applied this evolutionary 

method to a variety of hydrologic models and have proven the 

method to be efficient and potent for automatic optimization 

(e.g., Gan et al., 1997; Yu et al., 2001). 

The calibrated parameter values were used for hydrograph 

simulations of each model, and the model performances were 

then evaluated by comparisons of both the simulated hydro-

graphs and the MPI values. Fig. 5 (a) shows the simulation 

results for SFM, and Figs. 5 (b) and (c) present KWMSS1 

and KWMSS2 results for the various DEM scales. Table 1 

summarizes the results statistically.

The table shows that all models produced quantitatively 

acceptable MPI values larger than 0.93. KWMSS1 provided 

a good fit during the high flow period but could not accurately 

reproduce the rising and recession limbs of the hydrograph. 

All the MPI values for the low flow period were underestimated 

when compared to the results of the high flow period. In 

addition, the peak discharge of KWMSS1 was sensitive to 

the applied DEM sizes; it gradually increased as the spatial 

resolution of the DEM became coarser. This result means that 

the underlying assumption (or conceptualization) of the model 

structure was not appropriate for simulating low flow and thus 
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needs further modification. On the other hand, even though 

SFM was the simplest model, its simulation results were more 

accurate than those of the distributed model KWMSS1 for 

both periods. This finding supports the idea that if hydrologists 

have data of sufficient quality and quantity and a well-calibrated 

model, they do not need to choose a complicated hydrologic 

model for streamflow estimation because it will not necessarily 

produce an outstanding improvement (Jakeman & Hornberger, 

1993). KWMSS2 reproduced more balanced hydrographs than 

the other models used here, and its results were equally good 

regardless of the applied DEM sizes; in particular, the peak 

discharge changed little with the different DEMs.

4.2 Model Evaluation with the Model Structural 

Stability Index (MSSI)

Structural error is an unavoidable problem in hydrological 

modeling since a hydrologic model is only a conversion and 

simplification of reality; thus, models merely represent con-

ceptual or empirical aspects, as designed by modelers. Con-

sequently, the output time series of hydrologic models are 

as reliable as the hypotheses, model structure, quantity and 

quality of available data, and parameter estimates. Gupta et 

al. (1998, 2003) showed that a major consequence of structural 

inadequacy is the inability of a rainfall-runoff model to 

reproduce the entire (or global) hydrologic behavior with a 

single optimal parameter set estimated by traditional single- 

objective optimization algorithms. In other words, the subjective 

selection of an objective function for calibration of structurally 

imperfect models may result in overemphasis of different 

local response modes in the estimated hydrographs. This finding 

implies that different parameter combinations are required to 

represent specific local behaviors of the real rainfall-runoff 

system (Wagener et al., 2004). Yapo et al. (1998) and Vrugt et 

al. (2003) developed effective and efficient algorithms called 

multi-objective complex (MOCOM-UA) and multi-objective 

shuffled complex evolution metropolis (MOSCEM-UA) algorithms, 

respectively, for assessing the structural uncertainty. 

As documented by Gupta et al. (2003) and Yapo et al. 

(1998), a better (or more stable) model structure results in both 

smaller Pareto sets and more improved values with respect 

to the given objective functions during calibration trials. This 

implies that a structurally stable model can be regarded as a 

model representing constant and accurate hydrologic behaviors 

regardless of the objective function. Therefore, the level of 

performance consistency for various objective functions can 

serve as an indicator for assessing the model’s structural 

stability. In this study, two objective functions having different 

characteristics were used to evaluate the structural stability 

of models. The first was SLS, as described in the preceding 

section. In this objective function, residuals between the observed 

and simulated discharge are evenly weighted across an event; 

thus a parameter set, which matches well around the peak 

discharge, can be obtained. The second objective function 

was the heteroscedastic maximum likelihood estimator (HMLE); 

this is the most successful form of the maximum likelihood 

criteria, which properly accounts for non-stationary variance 

in streamflow measurement errors (Sorooshian & Dracup, 

1980). This measure incorporating weight provides a more 

balanced performance across the entire flow range and is 

calculated as

1

1

1HMLE=

N

t t
t

N

t
t

w

N w

ε
=

=

∑

∏  (10)

where εt = qt
obs ‑ qt (θ) is the model residual at time t, wt 

is the weight assigned to time t computed as wt = ft
2(λ‑1), ft 

is the expected true flow at time t, and λ is the transfor-

mation parameter which stabilizes the variance. Yapo et al. 

(1998) recommended the use of ft as observed flow for a 

more stable estimation. 

Finally, the MSSI is formulated in the form of the RMSE 

between both simulated discharges based on the optimal 

parameter sets estimated by the SCE-UA with SLS and 

HMLE, expressed as

2

1

1MSSI ( ( ) ( ))
=

= −∑
N

SLS HMLE
t

q t q t
N  (11)

where N is the total number of simulation time steps, and 

qSLS(t) and qHMLE(t) are the simulated discharges using the 

optimal parameters of SLS and HMLE, respectively. Here, 

a lower value of the MSSI indicates a more stable model 

structure.

Figs. 6 (a) and (b) show that the parameters based on SLS 

produce better hydrographs than the cases based on HMLE 
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Fig. 6. Assessment of the model structural stability of (a) SFM, 

(b) KWMSS1, and (c) KWMSS2 based on the 500-m DEM

in SFM and KWMSS1; SLS-based optimal parameter sets 

reproduce the peak discharge well, while HMLE-based optimal 

parameter sets provide improved results during the low-flow 

period. In contrast, the objective functions have only very 

small or no influence on the performances of KWMSS2 (see 

Fig. 6 (c)). 

Notably, as summarized in Table 2, the models with finer 

DEM resolution led to smaller differences between the repro-

duced hydrographs in distributed rainfall-runoff modeling 

using KWMSS1 and KWMSS2; the MSSI values decreased 

from 86.49 to 3.63 in KWMSS1 and from 31.47 to 9.97 in 

KWMSS2 as the DEM size decreased from 1 km to 250 m.

The results given from the structural stability assessment 

demonstrate that the parsimonious models used in this study, 

such as SFM and KWMSS1 with coarse DEM resolutions, were 

structurally unstable in terms of model output consistency 

with the objective functions; in turn, the model parameter 

set would have to be changed according to the modeling 

purpose. On the other hand, KWMSS2 led to comparatively 

stable model performances for the two objective functions. 

Moreover, in distributed rainfall-runoff modeling, the extent 

of the spatial aggregation of topography could be a dominant 

factor determining model structural stability as well as the 

model conceptualization in representing rainfall-runoff processes. 

Another interesting finding is that identical parameter sets 

were not obtained for both objective functions, even though 

KWMSS2 had the best structural stability. Instead, the optimal 

parameter combinations for SLS and HMLE resulted in indis-

tinguishable hydrographs, as shown in Fig. 6 (c). This result 

implies that increased model complexity guarantees increased 

structural stability, while the identifiability of model parameters 

decreases; various parameter sets may lead to equally good 

simulation results. The subsequent section examines a method 

to assess parameter identifiability.

4.3 Model Evaluation with the Model Parameter 

Identifiability Index (MPII)

Parameter identifiability suggests the level of “uniqueness” 

of parameters. A well-identified model has a certain (or global 

optimal) parameter value, while a poorly identified model 

accepts many behavioral parameter values, which can provide 

model performance measures as good as the value given the 

best-performing parameter. Wagener et al. (2001, 2003a) pro-

posed a simple measure of parameter identifiability based 

on a regional sensitivity analysis (RSA, Spear & Hornberger, 

1980; Freer et al., 1996). Their uniform random sampling 

method can be used extrapolate the parameter space easily, 

but it is computationally inefficient because a large number 

of samples are needed to protect against misleading results 

(Feyen et al., 2007). On the other hand, Markov chain Monte 

Carlo (MCMC) methods generate samples from Markov chains 

in an attempt to estimate the stationary posterior parameter 

distribution and can be useful for high-dimensional optimization 
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Table 2. MSSI values for each model structure: evaluation of the influence of the objective function on the model performance

Model
MSSI

Objective
Function

Best-performing Parameter

SFM 92.21

 k p f RSA -

SLS 49.61 0.52 0.63 201.21 -

HMLE 49.64 0.64 0.57 118.94 -

KWMSS1
(250 m)

3.63

N kd d - -

SLS 0.50 0.010 0.389 - -

HMLE 0.49 0.014 0.399 - -

KWMSS1
(500 m)

49.46
SLS 0.50 0.016 0.313 - -

HMLE 0.50 0.013 0.282 - -

KWMSS1
(1 km)

86.59
SLS 0.50 0.031 0.322 - -

HMLE 0.49 0.029 0.259 - -

KWMSS2
(250 m)

9.97

 N ka ds dc β

SLS 0.498 0.034 0.601 0.478 5.528

HMLE 0.497 0.050 0.682 0.600 6.368

KWMSS2
(500 m)

12.97
SLS 0.322 0.05 0.626 0.481 5.361

HMLE 0.453 0.05 0.755 0.600 7.602

KWMSS2
(1 km)

31.47
SLS 0.497 0.05 0.738 0.6 7.596

HMLE 0.500 0.05 0.696 0.6 6.980

Fig. 7. Evaluation of the Gelman & Rubin (1992) scale reduction 

score for KWMSS2 based on the 500-m DEM

problems (Kuczera & Parent, 1998).

The shuffled complex evolution metropolis (SCEM-UA) 

algorithm is an effective and efficient evolutionary MCMC 

sampler that has an enhanced search capability and operates 

by merging the strengths of the metropolis algorithm, controlled 

random search, competitive evolution, and complex shuffling 

(Vrugt et al., 2003). This algorithm can reveal not only the 

optimal parameter set but also its underlying stationary posterior 

distribution within a single optimization run. In individual 

posterior parameter distributions, the parameter value corres-

ponding to the highest density (i.e., the values marked by 

x within the parameter spaces of each model in Fig. 1) 

represents the optimal parameter value, while other parameter 

values within these distributions (i.e., the values inside the 

elliptical regions of each model in Fig. 1) are referred to as 

behavioral parameters. For parameter identifiability assessment, 

we applied the SCEM-UA to estimate individual posterior 

parameter distributions, and then investigated the uniqueness 

of the calibrated parameters from the probability density 

functions of each model. Here, the highest density values 

of each distribution were used as the individual indicators 

of parameter identifiability, and the mean value of each 

maximum identifiability indicator was used for the MPII. 

First, we checked the convergence of the MCMC sampler 

using a special criterion, the scale-reduction score ( SR ) 

developed by Gelman & Rubin (1992). If SR  is less than 

1.2, the Markov chain is considered to have converged into 

the target posterior distribution; otherwise, the evaluation steps 

are repeated until these sequences become stable. As shown 

in Fig. 7, the parameter sets corresponding to the first 4,000 

simulations out of 10,000 iterations of the SCEM-UA are 

“non-behavioral” ones because the MCMC sampler had not 

yet converged into the stationary posterior distribution. There-

fore, these sets were discarded from the estimation of the 

marginal posterior parameter distributions. For the remaining 

6,000 parameter sets, the initial (or feasible) ranges of each 

parameter were split into 100 containers, and the samples 
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Fig. 8. Estimation of parameter identifiability for (a) p of SFM and 

(b) β of KWMSS2 based on the 250-m, 500-m, and 1-km 

DEMs

Table 3. MPII values for each model structure: average maximum values of the marginal posterior parameter distributions of each 

parameter

Model
No.
parameter

SFM
KWMSS1 KWMSS2

250 m 500 m 1 km 250 m 500 m 1 km

1 k 0.076 n 0.205 0.45 0.251 n 0.122 0.059 0.24

2 p 0.188 kd 0.679 0.36 0.155 ka 0.343 0.115 0.883

3 f 0.068 d 0.532 0.804 0.8 ds 0.094 0.121 0.359

4 RSA 0.078 - - - - dc 0.085 0.107 0.324

5 - - - - - - β 0.11 0.157 0.339

MPII 0.103 0.472 0.538 0.402 0.151 0.112 0.429

Ave. MPII 0.103 0.471 0.231

within each bin were counted to calculate the frequencies. 

The resulting frequencies were transformed into probability 

density functions; the best performing parameters were then 

assigned the highest value, with all measures summing up 

to 1. The highest density function value was used as the index 

for individual parameter identifiability, and the mean value 

of the highest densities of the marginal posterior distributions 

was used as the MPII. Fig. 8 shows the estimated marginal 

posterior parameter distributions of parameter p of SFM and 

β of KWMSS2 with the three DEMs, and Table 3 presents 

the estimated MPII values for each model structure.

The SFM led to the lowest MPII value even though it has 

the most conceptualized model structure without consideration 

of the catchment topography. Moreover, KWMSS1 provided 

a generally higher MPII value than KWMSS2 in distributed 

rainfall-runoff modeling. It can be interpreted that the parameter 

interaction of the two additional parameters of KWMSS2, dc 

and β, with the other parameters resulted in poor identifiability. 

In other words, adding model parameters increases the degree 

of freedom and eventually decreases parameter identifiability. 

However, the parameter number does not solely affect the 

parameter identifiability in distributed rainfall-runoff modeling 

using KWMSS2. The topographic representation is also one 

of the fundamental factors determining model parameter iden-

tifiability; for example, the MPII values of models with 250-m 

and 500-m topographic resolution were much lower than the 

value for the coarsest resolution application in KWMSS2. 

In addition to parameter identifiability quantification, the 

uncertainty associated with behavioral parameter sets from 

the estimated posterior distributions was visualized by making 

probabilistic predictions. Probabilistic predictions were imple-

mented using 5400 parameter combinations at the 90% con-

fidence level for poorly identified models (SFM and KWMSS2 

based on the 500-m DEM) and a well-identified model (KWMSS1 

based on the 500-m DEM). Fig. 9 illustrates how the parameter 

uncertainty propagates into estimates of hydrograph simulation 

uncertainty. In this figure, the black circles indicate the observed 

streamflow data, and the gray shaded region shows hydrograph 

simulation uncertainty, which is associated with the posterior 

distribution of the parameter estimates. The uncertainty boundaries 

estimated by the posterior distributions of SFM and KWMSS1 

fail to bracket the observations over the entire period, parti-

cularly for the peak flow part of SFM and the low flow part 

of KWMSS1. Thus, improvements in the model structures 
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Fig. 9. Simulation uncertainty associated with the behavioral 

parameter sets for (a) SFM, (b) KWMSS1 based on the 

500-m DEM, and (c) KWMSS2 based on the 500-m DEM

and calibration data may result in more accurate predictions. 

Moreover, the parameter uncertainty of SFM resulted in a very 

wide uncertainty boundary, while the behavioral parameter 

sets of KWMSS2 provided a narrow range of hydrographs. 

This result supports the idea that complex hydrological modeling 

is likely to encounter the equifinality problem, making it 

difficult to discriminate quantitatively and qualitatively between 

reliable and unreliable parameter sets. 

The overall results of the model evaluation demonstrate that 

the ideal model structure, which guarantees the best values 

in terms of the three criteria, was not found in this study. 

The distributed model, KWMSS2, was much better than the 

simple models, SFM and KWMSS1, in terms of two evaluative 

criteria, MPI and MSSI, but KWMSS2 did not ensure the 

best parameter identifiability. Therefore, additional constraints 

that are able to reject unreliable parameter set(s) and provide 

reliable prediction results need to be combined in the proposed 

modeling framework for further model identification. 

5. Concluding Remarks

The traditional method of model evaluation usually relies 

only on model performance by comparing simulated variables 

to corresponding observations based on different periods and 

catchments. However, this classic type of model evaluation 

has been criticized because of its insufficient consideration of 

the various uncertainty sources involved in modeling processes. 

Despite the significant effects of such uncertainties on prediction 

results, the current modeling framework failed to fully incor-

porate the uncertainty components into the model evaluation. 

This paper discussed the use of an extended model evaluation 

method under uncertainty with the aim of identifying a reliable 

model structure. A set of rainfall-runoff models was developed 

and then evaluated three dimensionally with respect to model 

performance, model structural stability, and parameter identifi-

ability. From the specific types of evaluation criteria used in 

this study, we note the following findings.

(1) The results of the model performance evaluation indicated 

that all the models provided acceptable overall numerical 

outcomes as well as simulated hydrographs. However, 

the models showed different performances with regard 

to local behaviors, such as the rise and fall fractions of 

the hydrographs. KWMSS2 gave a balanced fit for all 

observed streamflow data regardless of the DEM size, 

while SFM and KWMSS1 provided marginally poor model 

performances during low flow periods. Moreover, despite 

the structural and systemic complexity of KWMSS1, it 

did not provide significantly improved model performance 

compared to SFM. Despite its simplicity, the very simple 

lumped conceptual model with sufficient available data and 

well-identified parameters can be expected to successfully 

represent the rainfall-runoff process in the mesoscale 

mountainous catchment (211 km2) studied here.

(2) The discrepancy between hydrographs simulated for the 

two objective functions, SLS and HMLE, was used to assess 
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the model structural stability. There was no significant 

difference between the two hydrographs of KWMSS2; 

however, the simpler conceptual models, SFM and KWMSS1, 

showed poor structural stability. Moreover, in distributed 

rainfall-runoff modeling with coarser DEM sizes, model 

performances greatly depended on the objective functions. 

An interesting finding was that despite having identical 

hydrographs and constant numerical statistics, an identical 

parameter set satisfying both objective functions was not 

given for KWMSS2. 

(3) A new index, MPII, was proposed for evaluating parameter 

identifiability. The posterior parameter distributions were 

estimated by the SCEM-UA method. The highest values of 

these probability density functions were used to indicate 

parameter identifiability. In distributed rainfall-runoff 

modeling, KWMSS1 generally provided higher MPII values 

than KWMSS2. This finding may be interpreted to mean 

that adding model parameters increases the degree of 

freedom of a parameter and eventually decreases parameter 

identifiability. However, the simplest model, SFM, had 

the worst parameter identifiability. Therefore, it is also 

noteworthy that an increased parameter number influences 

parameter identifiability either solely or in combination 

with other factors such as the model structure itself and 

the spatial scale of the model-building unit due to different 

DEM sizes. 
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