• Title/Summary/Keyword: Crane systems

Search Result 246, Processing Time 0.029 seconds

Tracking Control System Design for the Transfer Crane : Design of Full-order Observer with Weighted $H_{\infty}$ Error Bound (트랜스퍼 크레인의 이송위치제어를 위한 서보계 설계 : 가중 $H_{\infty}$ 오차사양을 만족하는 동일차원 관측기 설계)

  • Kim, Y.B.;Jeong, H.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.42-49
    • /
    • 2008
  • The most important job in the container terminal area is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. Especially, in this paper, the system modelling and tracking control approach are discussed. And, we design the tracking control system incorporating an observer based on the 2DOF servo system design approach to obtain the desired state informations. In the case of observer design, a weighted $H_{\infty}$ error bound approach for a state estimator is considered. Based on an algebraic Riccati equation(inequality) approach, a necessary and sufficient condition for the existence of a full-order estimator which satisfies the weighted $H_{\infty}$ error bound is introduced. Where, the condition for existence of the estimator is denoted by a Linear Matrix Inequality(LMI) which gives an optimized solution and observer gain. Based on this result, we apply it to the tracking control system design for the transfer crane.

  • PDF

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

객체지향 기법을 이용한 다관절 크레인의 유압 시스템 시뮬레이션

  • 김문기;심영보;장명수;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.751-755
    • /
    • 1995
  • It become more difficult to anticipate the performance of fluid power systems as the number of components increases because of nonlinearrities inherent in hydraulic components. In this situation, the computer simulation technique can be an effective tool in the analysis and design of fluid power systems. In this paper, simulation results are presented for dynamic characteriatics of a knuckle crane. Simple models for hydraulic components and relatively detailed motion equations for attachments are used. the simulation reaults are very close to those of experiments. The simulation is performed using a simulation package developed with object-oriented method. This package provides the encironment that user can construct desirct desired circuits form the component library, checks the continuity and compatibility conditions automatically and executes simulation

  • PDF

Nonlinear control of underactuated mechanical systems via feedback linearization and energy based Lyapunov function

  • Hong, Keum-Shik;Sohn, Sung-Chul;Yang, Kyung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.77-80
    • /
    • 1996
  • In this paper a nonlinear control strategy via feedback linearization and energy based Lyapunov function for underactuated mechanical systems is investigated. Underactuated mechanical system is a system of which the number of actuators is less than the number of degrees of freedom. Developed algorithm is applied to a crane system of grab operation. Positioning of the trolley as well as swing-up of the pendulum to the up-right position including maintaining the sway angle at some desired degree are demonstrated. Simulations are provided.

  • PDF

A Sequencing Algorithm for Order Processing by using the Shortest Distance Model in an Automated Storage/Retrieval Systems (자동창고시스템에 있어서 최단거리모형을 이용한 주문처리결정방법)

  • 박하수;김민규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.33
    • /
    • pp.29-37
    • /
    • 1995
  • An Automated Storage/Retrieval Systems(AS/RS) has been gradually emphasized because of the change of production and distribution environment. This paper develops algorithm and Shortest Distance Model that can reduce the traveling time of a stacker crane for efficient operation of AS/RS. In order to reduce the traveling time of a stacker crane, we determine the order processing and then the sequencing of storage/retrieval for each item. Order processing is determined based on the SPT(Shortest Processing Time) concept considering a criterion of retrieval coordinate. The sequencing of storage/retrieval is determined based on the Shortest Distance Model by using a modified SPP(Shortest Path Problem) of network problem. A numerical example is provided to illustrate the developed algorithm and Shortest Distance Model.

  • PDF

Installation Analysis of Multibody Systems Dynamics of an Offshore Wind Turbine Using an Offshore Floating Crane (해상 크레인을 이용한 해상 풍력 발전기의 다물체계 동역학 설치 해석)

  • Ku, Nam-Kug;Ha, Sol;Kim, Ki-Su;Roh, Myung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.233-239
    • /
    • 2013
  • Recently, a number of wind turbines are being installed due to the increase of interest in renewable, environment-friendly energy. Especially, an offshore wind turbine is being watched with keen interest in that it has no difficulty in securing a site and can get high quality of wind, as compared with a wind turbine on land. The offshore wind turbine is transferred to and installed on the site by an offshore floating crane after it was made in a factory on land such as shipyard. At this time, it is important to secure the safety of the turbine because of its huge size and expensive cost. Thus, a dynamic analysis of the offshore wind turbine which is connedted with the offshore floating crane was performed based on the multibody systems dynamics in this study. As a result. it is shown that the analysis can be applied to verify the safety of a method for the transportation and installation of the offshore wind turbine suspended by the crane.

Anti-Sway System of Container Transfer Crane for Automated Container Terminal : Part I - Basic Structure, Modeling and Control (자동화 컨테이너 터미널을 위한 컨테이너 트랜스퍼 크레인의 안티 스웨이 시스템;Part I - 기본 구조, 모델링, 제어)

  • 박찬훈;김두형;신영재;박경택
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1112-1118
    • /
    • 2004
  • Automated container terminals have been developed over the world years and many countries are interested in them because the amount of containers exported or imported is rapidly increasing. The conventional container terminals were not designed to handle this kind of heavily many containers. They would face many structural problems soon or later, although they have been managed to do well so far. One of the most important things in automated container terminal is the handing equipments able to transfer many containers efficiently. Those are maybe automated transfer cranes, automatic guided vehicles and automated quay-side cranes. The word 'automated' means the equipment is operated without drivers and those equipments are able to work without any interruption in working schedule. Through the researches on the conventional transfer cranes, we decided that the structure of conventional transfer cranes is not proper in automated container terminal and it is not possible to handle so many container in limited time. Therefore we have been studying on the proper structure of the automated container for past several years and a new type of transfer cranes has been developed. Design concept and control method of the new crane are introduced and experimental results are presented in this paper.his paper.

Sway Control of a Container Crane ( Part I ) : Modeling, Control Strategy, Error Feedback Control Via Reference Velocity Profiles (컨테이너 크레인의 흔들림 제어 ( Part I ) : 모델링, 제어전략, 기준선도를 통한 오차 피이드백 제어)

  • Hong, Keum-Shik;Sohn, Sung-Chull;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.23-31
    • /
    • 1997
  • The sway control problem of pendulum motion of a container hanging on a Portainer Crane, which transports containers from a container ship to trucks, is considered in the paper. The equations of motion are obtained through the Lagrange mechanics and simplified for control purposes. Considering that the fast traveling of trolley and no residual swing motion of the container at the end of acceleration and deceleration are crucial for quick transportation, several velocity patterns of trolley movement including the time-optimal control are investigated. Incorporating the change of rope length, a reference swing trajectory is introduced in the control loop and the error signal between the reference sway angle and the measured sway angle is feedbacked. Proposed control strategy is shown to be robust to disturbances like winds and initial sway motion.

  • PDF

Dynamics Analysis and Residual Vibration Control of an Overhead Shuttle System (오버헤드셔틀시스템의 동특성해석 및 잔류진동제어)

  • Piao, Mingxu;Kim, Gyoung-Hahn;Shah, Umer Hameed;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.445-452
    • /
    • 2016
  • This paper discusses the dynamics and control problem of an overhead shuttle system (OSS), which is a critical part of the automated container terminal at a port. The main purpose of the OSS is efficient automated transport function of containers, which also requires high precision and safety. A major difference between the OSS and the conventional container crane is the configuration of the cables for hoisting the spreader. A mathematical model of the OSS is developed here for the first time, which results in an eight-pole system. Also, open loop control methods (trapezoidal and notch-type velocity profiles) are investigated so that the command input to the overhead shuttle produces the minimum possible sway of the payload. Simulation results show that the vibration suppression capability of the OSS is superior to the conventional overhead container crane, which is partially due to the cable configuration.

A Study on the Sway Control of a Container Crane Based on $H^{\infty}$ Gain-Scheduling Approach ($H^{\infty}$ Gain-Scheduling 기법을 이용한 컨테이너 크레인의 흔들임 제어에 관한 연구)

  • Kim, Yeong-Bok;Jeong, Yong-Gil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.559-566
    • /
    • 2001
  • The sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. In this paper, we introduce and synthesize a new type of swing motion control system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mall applies inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we apply the $H^{\infty}$ based gain-scheduling control technique to the anti-swing motion control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful for the case of time-varying system and, robust to disturbances such as winds and initial sway motion.

  • PDF