• Title/Summary/Keyword: CrN film

Search Result 143, Processing Time 0.03 seconds

Pretreatment for Cu electroplating and Etching Property of Cu-Cr Film (Cu-Cr합금 박막의 구리 전기도금을 위한 전처리 및 에칭 특성에 관한 연구)

  • Kim, N. S.;Kang, T.;Yun, I. P.;Park, Y. S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.3
    • /
    • pp.149-157
    • /
    • 1993
  • In the study of TAB(Tape Automated Bonding)technologies, Cu-Cr sputtered seed layer has been used to improve the adhesion between Polyimide and Cu film and electrical properties. But the Cu electrodeposit on Cu-Cr film had poor adhesion or powder-like form due to the surface Cr oxides on the Cu-Cr film. By means of activating the Cu-Cr film with the oxalic acid and phosphoric acid, the Cu film with the improved adhesion could be coated on the Cu-Cr sputtered film in CuSO4 solution. The etching rate was compared with increasing the Cr content of the sputtered Cu-Cr film, and anodic polarization curve in FeCl3 solution was investigated. With increasing the Cr content, the etching rate was reduced. The clean etching cross section could be obtained with increasing the concentration of FeCl3 solution. But above the 13 w/o Cr content, Cu-Cr sputtered film could not bed etched cleanly only with FeCl3 solution and additives were needed.

  • PDF

A Study on the Reistivity and Temperature Coefficient of Resistivity of Stacked $TaN_x$/Cr Cermet Thin Film ($TaN_x$/Cr Cermet 적층 박막의 비저항 및 저항온도계수에 관한 연구)

  • 허명수;천희곤;인건환;권식철;조동율
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.2
    • /
    • pp.190-197
    • /
    • 1994
  • 본 연구에서는 DC magnetron 스퍼터링법을 이용하여 고정밀, 고저항 저항체 박막으로 TaNx film을 제조하였을 때 형성될 수 있는 화합물 중 TaN0.1, TaN0.8과 TaN 박막의 Rs와 TCR특성을 평가하 고 film층의 우선방향성을 XRD를 이용하여 판명한 뒤 저항체의 Rs와 TCR에 미치는 영향을 조사하였 다. TaN0.1 박막이 35$\Omega$/$\square$의 면저항값과 안정된 TCR값을 나타내는 것을 알수 있었다. 두께50~200nm 의 TaN0.1과 Alumina 기판 사이에 정(+)의 TCR을 갖는 약 50nm의 Cr층을 증착하였을 때 Rs는 180$\Omega$/ $\square$ 과 TCR는 20ppm/$^{\circ}C$인 적층박막을 제조할 수 있었다. TaN0.1, TaN0.8 과 TaN 시편에서 화합물 형성 에 따른 Ta의 결합에너지를 ESCA를 이용하여 조사하였다. 이상의 연구결과로부터 TaN0.1 film이 TaNfilm 보다 고정밀, 고저항 박막 저항체 제조에 있어 우수한 전기저항 특성을 가지며 Cr 중간층 형성 으로 TCR이 $\pm$ppm/$^{\circ}C$정도로 안정된 고정밀 다층 저항체 박막을 형성할 수 있었다.

  • PDF

Effect of Electron Irradiation on the Surface Hardness and Wear Characteristic of CrAlN Thin Film Deposited on the SKD61 Mold Steel (전자빔 조사에 따른 CrAlN/SKD61의 표면경도 및 내마모도 개선효과)

  • Eom, Tae-Young;Song, Young-Hwan;Choi, Su-Hyun;Choi, Jin-Young;Heo, Sung-Bo;Kim, Jun-Ho;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.4
    • /
    • pp.164-168
    • /
    • 2017
  • Intense electron beam was irradiated on the CrAlN thin films deposited in SKD61 under different incident energies and then the effect of electron beam irradiation on the enhancement of surface hardness and wear resistance was investigated. Surface hardness and wear resistance of the CrAlN films is increased proportionally with the electron beam energy. While the surface hardness of as deposited CrAlN film is Hv ($0.1g{\cdot}f$) 450, the hardness oflectron irradiated (600 eV) film is Hv ($0.1g{\cdot}f$) 2050. The width of wear track of the untreated SKD61 is $X\_{\mu}m$, while the track-width of the electron irradiated CrAlN (600 eV) film is $787{\mu}m$, respectively. From the observed results, it is supposed that the optimal electron beam irradiation can be one of the useful surface treatment technologies for the enhancement of surface hardness and wear resistance of CrAlN/SKD61, simultaneously.

Creep Properties of Plasma Carburized and CrN Coated Ti-6Al-4V Alloy (플라즈마 침탄 및 CrN 코팅된 Ti-6Al-4V 합금의 구조 및 Creep특성)

  • Wey Myeong-Yong;Park Yong-Gwon
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.558-564
    • /
    • 2004
  • In order to improve the low hardness and low wear resistance of Ti-6Al-4V alloy, plasma carburization treatment and CrN film coating were carried out. Effects of the plasma carburization and CrN coating were analyzed and compared with the non-treated alloy by mechanical and creep tests. After plasma carburization and CrN coating treatments, the carburized layer was about 150 ${\mu}m$ in depth and CrN coated layer was about 7.5 ${\mu}m$ in thickness. Hardness value of about $H_{v}$ 402 of the non-treated alloy was improved to $H_{v}$ 1600 and 1390 by plasma carburization and CrN thin film coating, respectively. Stress exponent(n) was decreased from 9.10 in CrN coating specimen to 8.95 in carburized specimen. However, the activation energy(Q) was increased from 242 to 250 kJ/mol. It can be concluded that the static creep deformation for Ti-6Al-4V alloy is controlled by the dislocation climb over the ranges of the experimental conditions.

Evaluation for Thin Films Characteristics of Nitride Titanium-Chromium using Arc Ion Plating (아크이온플레이팅에 의한 질화 티탄-크롬의 박막특성 평가)

  • Fujita, Kazuhisa;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.96-101
    • /
    • 2011
  • The thin films of TiN have been used extensively as wear-resistant materials, for instance, such as tools of high-speed cutting, metal mold forming etc. In these days, because the thin films capable of being used more severe conditions are needed, the technologies of arc ion plating are tried to improve its characteristics. The purpose of this study is to investigate the characteristics of thin films of (Ti,Cr)N compared with those of TiN. The method of arc ion plating, which is known as showing good tight-adherence and productivity, was used. After manufacturing thin films of ($Ti_{1-x}Cr_{x}$)N (x=0~1) with change of Cr in (Ti,Cr) target, atomic concentration, structure, size of crystallite, residual stress and surface roughness of thin films on substrate were investigated. As the results, it was confirmed that Cr atomic concentrations of thin films were proportionally changed with Cr atomic concentrations of target, and thin films of ($Ti_{1-x}Cr_{x}$)N (x=0~1) showed NaCl type and CrN existed as solid solution to TiN.

A study on the manufacturing of super precision multilayer cermet thin film resistor (초정밀 다층 Cermet 박막저항체 제조에 관한 연구)

  • 허명수;최승우;천희곤;권식철;이건환;조동율
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.77-84
    • /
    • 1997
  • Super precision resistor was manufactured by controlling properly the thickness of $TaN_{0.1}$ (negative TCR) and Cr(positive TCR) deposited on cylindrical alumina substrate (diameter: 4 mm, length: 11 mm). Multilayer thin film resistor of $Ta_2O_5/TaN_{0.1}$/Cr/Alumina (substrate) was manufactured by depositing of $Ta_2N_5$ film on $TaN_{0.1}$ film to increase Rs to the level of 1;k{\Omega}/{\box}$ and to passivate the film. Super precision resistor with TCR of $20\pm5 ppm/^{\circ}C$ and Rs of $1\;k{\Omega}/{\box}$ was manufactured by depositing thin layers of about 10 nm $Ta_2O_5$, 100 nm $TaN_{0.1}$ and 50 nm Cr film under the properly controlled sputtering condition.

  • PDF

High-temperature Oxidation of CrZrN Films in Air (CrZrN 박막의 대기 중 고온산화)

  • Kim, Min-Jeong;Hwang, Yeon-Sang;Bong, Seong-Jun;Lee, Sang-Yul;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.167-168
    • /
    • 2012
  • Films of CrN, $Cr_{40}Zr_9N$, and $Cr_{31}Zr_{16}N$ were deposited on a steel substrate by closed field unbalanced magnetron sputtering, and their oxidation behaviors at $700^{\circ}C$ and $800^{\circ}C$ for up to 60h in air were investigated. All the deposited films were composed of the CrN phase. Zirconium atoms in $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films partially dissolved in the CrN phase. They advantageously refined the columnar structure, reduced the surface roughness, and increased the microhardness. The CrN film displayed relatively good oxidation resistance, owing to the formation of the highly protective $Cr_2O_3$ on its surface. The $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films oxidized to $Cr_2O_3$ as the major phase and ${\alpha}-ZrO_2$ as the minor one. They oxidized primarily by the inward transport of oxygen. The addition of Zr could not increase the oxidation resistance of the CrN film, because the formed $ZrO_2$ that was intermixed in the $Cr_2O_3$-rich oxide layer was oxygen permeable, and developed the compressive stress in the oxide scale owing to the volume expansion during its formation.

  • PDF

High-temperature Oxidation of the TiAlCrSiN Film (TiAlCrSiN 박막의 고온 산화 부식)

  • Lee, Dong-Bok;Kim, Min-Jeong;Abro, M.A.;Yadav, P.;Shi, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.107-107
    • /
    • 2016
  • TiCrAlSiN films were developed in order to improve the high-temperature oxidation resistance, corrosion resistance, and mechanical properties of conventional TiN films that are widely used as hard films to protect and increase the lifetime and performance of cutting tools or die molds. In this study, a nano-multilayered TiAlCrSiN film was deposited by cathodic arc plasma deposition. It displayed relatively good oxidation resistance at $700-900^{\circ}C$, owing to the formation protective oxides of $Al_2O_3$, $Cr_2O_3$, and $SiO_2$, and semiprotective $TiO_2$. At $1000^{\circ}C$, the increased temperature led to the formation of the imperfect oxide scale that consisted primarily of the outer ($TiO_2$,$Al_2O_3$)-mixed scale and inner ($TiO_2$, $Al_2O_3$, $Cr_2O_3$)-mixed scale.

  • PDF

Effect of Si Addition on the Corrosion Resistance of CrN Coatings in a Deaerated $3.5wt.\%$ NaCl Solution (탈기된 $3.5wt.\%$ NaCl 용액 환경에서의 스테인리스 강에 증착된 CrN 박막의 Si 첨가에 따른 영향 평가)

  • Kim Woo-Jung;Choi Yoon-Seok;Kim Jung-Gu;Lee Ho-Young;Han Jeon-Gun
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.137-143
    • /
    • 2005
  • CrSiN coatings of stepwise changing Si concentration were deposited on stainless steel by closed field unbalanced magnetron sputtering (CFUBM) system. Microstructure of the films due to the Si concentration is measured by XRD. The corrosion behavior of CrSiN coatings in deaerated $3.5\%$ NaCl solution was investigated by potentiodynamic test, electrochemical impedance spectroscopy (EIS) and surface analyses. The microstructure of CrSiN film depends on the Si concentration. When Si/(Cr+si) was under $11.7\%$, preferred orientation is defined at CrN(220), CrN(311) and $Cr_2N(111).$ The results of potentiodynamic polarization tests showed that the corrosion current density and porosity decreased with increasing Si/(Cr+si) ratio. EIS measurements showed that the corrosion resistance of Si-bearing CrN was improved by phase transformation of the film, which leads to increase of pore resistance and charge transfer resistance. At the Si(Cr+si) ratio of 20, the Si-bearing CrN possesses the best corrosion resistance due to the highest pore resistance and charge transfer resistance.

Effects of Alloying Elements(Cr, Mo, N) on Repassivation Characteristics of Stainless Steels Studied by the Abrading Electrode Technique and A.C Impedance Spectroscopy (마멸 전극 기법과 교류 임피던스법으로 연구한 스테인리스강의 합금원소(Cr, Mo, N)가 재부동태 특성에 미치는 영향)

  • Ham Dong-Ho;Kim Suk-Won;Lee Jae-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.211-218
    • /
    • 2000
  • The effects of alloying elements, Cr, Mo, and N on repassivation characteristics of stainless steels were investigated by using the abrading electrode technique and a.c impedance spectroscopy. The role of alloying elements on the stability of passive film and their repassivation characteristics were examined using alloy steels such as Fe-Cr, Fe-Cr-Mo, 304, 304LN, 316, and 316LN. The electrochemical characteristics of the passive film were investigated by in-situ d.c. and a.c. electrochemical methods. Localized corrosion resistance is believed to have much to do with the stability and repassivation characteristics of the passive film. The effects of alloying elements on the current transients and repassivation kinetics were systematically examined by using the abrading electrode technique and a.c. impedance spectroscopy. The experimental results were analyzed in order to elucidate the relationship between passive film stability, repassivation characteristics, and alloying elements.