Effect of Si Addition on the Corrosion Resistance of CrN Coatings in a Deaerated $3.5wt.\%$ NaCl Solution

탈기된 $3.5wt.\%$ NaCl 용액 환경에서의 스테인리스 강에 증착된 CrN 박막의 Si 첨가에 따른 영향 평가

  • Kim Woo-Jung (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Choi Yoon-Seok (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim Jung-Gu (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Lee Ho-Young (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Han Jeon-Gun (Department of Advanced Materials Engineering, Sungkyunkwan University)
  • 김우중 (성균관대학교 신소재공학과) ;
  • 최윤석 (성균관대학교 신소재공학과) ;
  • 김정구 (성균관대학교 신소재공학과) ;
  • 이호영 (성균관대학교 신소재공학과) ;
  • 한전건 (성균관대학교 신소재공학과)
  • Published : 2005.08.01

Abstract

CrSiN coatings of stepwise changing Si concentration were deposited on stainless steel by closed field unbalanced magnetron sputtering (CFUBM) system. Microstructure of the films due to the Si concentration is measured by XRD. The corrosion behavior of CrSiN coatings in deaerated $3.5\%$ NaCl solution was investigated by potentiodynamic test, electrochemical impedance spectroscopy (EIS) and surface analyses. The microstructure of CrSiN film depends on the Si concentration. When Si/(Cr+si) was under $11.7\%$, preferred orientation is defined at CrN(220), CrN(311) and $Cr_2N(111).$ The results of potentiodynamic polarization tests showed that the corrosion current density and porosity decreased with increasing Si/(Cr+si) ratio. EIS measurements showed that the corrosion resistance of Si-bearing CrN was improved by phase transformation of the film, which leads to increase of pore resistance and charge transfer resistance. At the Si(Cr+si) ratio of 20, the Si-bearing CrN possesses the best corrosion resistance due to the highest pore resistance and charge transfer resistance.

Keywords

References

  1. W. Ruppert, U. S. Patent 2962388
  2. C. Lee, Thin Solid Films, 86 (1981) 64
  3. T. Hale, lnt. Machine Tool Show Technical Conf., (1982)
  4. H. Yoshihara, Thin Solid Films, 76 (1981) 1 https://doi.org/10.1016/0040-6090(81)90061-4
  5. K. Kashiwagi, K. Kobayashi, A. Masuyama, Y. Murayama, J. Vac. Sci. Technol. A, 4 (1986) 210 https://doi.org/10.1116/1.573472
  6. G. V. Samsonov, High-Temperature Materials, Properties Index, Plenum, New York (1964)
  7. Y. Chiba, T. Omura, H. Ichimura, J. Mater. Res., 8 (1993) 1109 https://doi.org/10.1557/JMR.1993.1109
  8. W. D. MUnz, J. GObel, Surf. Eng., 3 (1987) 47 https://doi.org/10.1179/sur.1987.3.1.47
  9. K. H. Kim, S. R Choi, S. Y. Yoon, Surf. Coat. Technol., 298 (2002) 243
  10. J. B. Choi, K. Cho, M. H. Lee, K. H. Kim, Thin Solid Films, 447-448 (2004) 365-370 https://doi.org/10.1016/S0040-6090(03)01083-6
  11. S. Veprek, M. Haussmann, S. Reiorich, Li Schzhi, J. Dian, Surf. Coat. Technol., 86-87 (1996) 394-401 https://doi.org/10.1016/S0257-8972(96)02988-X
  12. S. Veprek, S. Reiprich, Thin Solid Films 268 (1995) 64 https://doi.org/10.1016/0040-6090(95)06695-0
  13. H. Y. Lee, W. S. Jung, J. G. Han, S. M. Seo, J. H. Kim, Y. H. Bae, Surf. Coat. Technol., to be published (2005)
  14. B. D. Cullity, Elements of X-ray Diffractions, 2 (1978) 286
  15. S. Veprek, S. Reiprich, Thin Solid Films, 268 (1995) 64 https://doi.org/10.1016/0040-6090(95)06695-0
  16. B. Matthes, E. Brozeit, J. Aromaa, H. Ronkainen, S. P. Hannula, A. Leyland, A. Matthews, Surf. Coat. Technol., 49, 489 (1991) https://doi.org/10.1016/0257-8972(91)90105-6
  17. S. H. Ahn, Y. S. Choi, J. G. Kim, J. G. Han, Surf. Coat. Technol., 150 (2002) 319 https://doi.org/10.1016/S0257-8972(01)01529-8