Browse > Article

Effect of Si Addition on the Corrosion Resistance of CrN Coatings in a Deaerated $3.5wt.\%$ NaCl Solution  

Kim Woo-Jung (Department of Advanced Materials Engineering, Sungkyunkwan University)
Choi Yoon-Seok (Department of Advanced Materials Engineering, Sungkyunkwan University)
Kim Jung-Gu (Department of Advanced Materials Engineering, Sungkyunkwan University)
Lee Ho-Young (Department of Advanced Materials Engineering, Sungkyunkwan University)
Han Jeon-Gun (Department of Advanced Materials Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean institute of surface engineering / v.38, no.4, 2005 , pp. 137-143 More about this Journal
Abstract
CrSiN coatings of stepwise changing Si concentration were deposited on stainless steel by closed field unbalanced magnetron sputtering (CFUBM) system. Microstructure of the films due to the Si concentration is measured by XRD. The corrosion behavior of CrSiN coatings in deaerated $3.5\%$ NaCl solution was investigated by potentiodynamic test, electrochemical impedance spectroscopy (EIS) and surface analyses. The microstructure of CrSiN film depends on the Si concentration. When Si/(Cr+si) was under $11.7\%$, preferred orientation is defined at CrN(220), CrN(311) and $Cr_2N(111).$ The results of potentiodynamic polarization tests showed that the corrosion current density and porosity decreased with increasing Si/(Cr+si) ratio. EIS measurements showed that the corrosion resistance of Si-bearing CrN was improved by phase transformation of the film, which leads to increase of pore resistance and charge transfer resistance. At the Si(Cr+si) ratio of 20, the Si-bearing CrN possesses the best corrosion resistance due to the highest pore resistance and charge transfer resistance.
Keywords
EIS; CrN; CrSiN; Si;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kashiwagi, K. Kobayashi, A. Masuyama, Y. Murayama, J. Vac. Sci. Technol. A, 4 (1986) 210   DOI
2 G. V. Samsonov, High-Temperature Materials, Properties Index, Plenum, New York (1964)
3 W. D. MUnz, J. GObel, Surf. Eng., 3 (1987) 47   DOI
4 K. H. Kim, S. R Choi, S. Y. Yoon, Surf. Coat. Technol., 298 (2002) 243
5 S. H. Ahn, Y. S. Choi, J. G. Kim, J. G. Han, Surf. Coat. Technol., 150 (2002) 319   DOI   ScienceOn
6 T. Hale, lnt. Machine Tool Show Technical Conf., (1982)
7 H. Y. Lee, W. S. Jung, J. G. Han, S. M. Seo, J. H. Kim, Y. H. Bae, Surf. Coat. Technol., to be published (2005)
8 S. Veprek, S. Reiprich, Thin Solid Films 268 (1995) 64   DOI   ScienceOn
9 H. Yoshihara, Thin Solid Films, 76 (1981) 1   DOI   ScienceOn
10 B. D. Cullity, Elements of X-ray Diffractions, 2 (1978) 286
11 S. Veprek, M. Haussmann, S. Reiorich, Li Schzhi, J. Dian, Surf. Coat. Technol., 86-87 (1996) 394-401   DOI   ScienceOn
12 S. Veprek, S. Reiprich, Thin Solid Films, 268 (1995) 64   DOI   ScienceOn
13 W. Ruppert, U. S. Patent 2962388
14 C. Lee, Thin Solid Films, 86 (1981) 64
15 Y. Chiba, T. Omura, H. Ichimura, J. Mater. Res., 8 (1993) 1109   DOI   ScienceOn
16 J. B. Choi, K. Cho, M. H. Lee, K. H. Kim, Thin Solid Films, 447-448 (2004) 365-370   DOI   ScienceOn
17 B. Matthes, E. Brozeit, J. Aromaa, H. Ronkainen, S. P. Hannula, A. Leyland, A. Matthews, Surf. Coat. Technol., 49, 489 (1991)   DOI   ScienceOn