• Title/Summary/Keyword: Cr Coating

Search Result 494, Processing Time 0.029 seconds

Current Researches on the Protection of Exterior Wood from Weathering (목재의 기상열화 방지에 관한 최근의 연구 동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.449-470
    • /
    • 2018
  • A review of research trends on wood surface protection for exterior use obtained the following conclusions: It has been reported that inorganic compounds such as chrome and copper used as wood preservatives can protect wood from weathering. It has been shown that precoating with hydrophobic substances such as wax and oil, UV absorbers, and HALS (Hindered Amine Light Stabilizers) enhances weathering resistance on the surface of ACQ-treated wood. Opaque coatings of paint/stains and semitransparent stains on the surface of preservative treated wood can increase the synergistic effects on prevention of weathering deterioration. Also the need for repainting periodically for the protection of the preservative treated wood surface has also been suggested. ZnO or $TiO_2$ of fine particles, metal ions such as Co, Cr, Fe, Mn, Ni and Ti, and UV absorbers such as tris-resorcinol triazine derivatives, triazine and benzotriazole were introduced as additives for preventing UV in the transparent coating on wood. Several reports showed that chemical modification such as methylation, acetylation, or alkylations have made some increases the effects of preventing weathering with the increasing weight gain of chemical formulas. In heat-treated wood, there were various contradictory reports on the resistance of weathering, and there were some other reports emphasizing the necessity of painting with UV resistance, which leads to the necessity of more advanced studies.

Corrosion Behavior of $Y_2O_3$ Coating in an Electrolytic Reduction Process (전해환원공정에서 $Y_2O_2$ 코팅층의 부식거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seung;Jeong, Myeong-Soo;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The electrolytic reduction of a spent oxide fuel involves a liberation of the oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the high molten salt. In this study, hot corrosion studies were performed on bare as well as coated superalloy specimens after exposure to lithium molten salt at $675^{\circ}C$ for 216 h under an oxidizing atmosphere. The IN713LC superalloy specimens were sprayed with an aluminized NiCrAlY bond coat and then with an $Y_2O_3$ top coat. The bare superalloy reveals an obvious weight loss due to spalling of the scale by the rapid scale growth and thermal stress. The chemical and thermal stability of the top coat has been found to be beneficial for increasing to the corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Competitive Enzyme-Linked Immunosorbent Assay for Detection of Gentamicin Residues in Edible Animal products (축산식품 중에 잔류하는 Gentamicin 검사를 위한 ELISA 개발에 관한 연구)

  • Kim, Jae-Myung;Lee, Mun-Han;Lee, Hang;Ryu, Pan-Dong;Cho, Myung-Haing;Park, Jong-Myung
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.3
    • /
    • pp.123-131
    • /
    • 1994
  • An enzyme-linked immunosorbent assay(ELISA) was developed for the detection of residual gentamicin(GM) in edible animal products. The immunogen(GM-KLH conjugate) and coating antigen(GM-BSA conjugate) were prepared by coupling GM sulfate to keyhole limpet hemocyanin(KLH) and bovine serum albumin(BSA) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, respectively. Polyclonal antibody to GM was produced in rabbits(New Zealand White, female) by using the immunogen and the antibody titer was measured by indirect ELISA. A competitive ELISA was developed using GM-bovine serum albumin conjugate as a coating antigen, GM(as standards or sample), polyclonal antibody to GM, secondary antibody conjugated with horseradish peroxidase as an enzyme, and H2O2 and o-phenylenediamine dihydrochloride as a substrate and a chromophore, respectively. The detection limit of GM was 10 ng/ml and the standard curve of GM(n=26) was linear up to 10 $\mu\textrm{g}$/ml in this competitive ELISA system. There were no cross-reactivities of the partially purified antibody between GM and the various antibiotice such as amikacin, benzyl-penicillin, chloramphenicol, erythromycin, furazlidone, kanamycin, neomycin, oleandomycin, streptomycin, sulfathiazole and thiamphenicol(CR50<0.05%)

  • PDF

EFFECT OF SURFACE TREATMENTS ON THE BOND STRENGTH OF DENTURE BASE RESINS TO DENTAL ALLOY (표면 처리법에 따른 치과용 합금과 열중합형 레진 간의 결합 강도에 관한 연구)

  • Lee Joo-Hee;Jung Eun-Min;Jang Bok-Sook;Chung Dong-June;Heo Seong-Joo;Han Dong-Hoo;Shim June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.344-351
    • /
    • 2002
  • The purpose of this study is to compare tensile bond strength between Cr-Co alloy and three denture base resins after surface treatment. Following the manufacturer's instructions, 180 bonded specimens were made from three denture base resins (Lucitone 199. Paladent 20. POSS resin) and three surface treatment methods (sandblasting. metal primer. silicoating) 20 samples were made in each group and a half was ther-mocycled 1000 times between $5^{\circ}C$ and $55^{\circ}C$. The tensile bond strength was measured using an Instron with 5mm/min crosshead speed. Data was analyzed with one-way ANOVA, T-test and Duncan test. The results were as follows : 1. Samples with metal primer coating had significantly high tensile bond strength than the other surface treated groups (p<.05). Significantly low tensile bond strength was shown in sand blasted groups (p<.05). 2. No significant difference was observed in metal primer coating groups before and after ther-mocycling (p>.05) 3. Tensile bond strength was decreased in silicoated samples after thermocycling (p<.05). 4. Of the surface treated groups with metal primer, Lucitone 199 had the greatest bond strength and POSS resin and Paladent 20 were followed (p<.05). 5. Of the surface treated groups with silicoating, POSS resin and Lucitone 199 had greater bond strength than Paladent 20 (p<.05).

Influence of Manufacturing Conditions on the Reflectance and Life Time of the Gold Protected IR Mirror (금 증착 적외선 반사판의 반사율 및 수명에 미치는 제조공정 변수의 영향)

  • Choi, Yong-Sun;Lee, Young-Ki;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.201-207
    • /
    • 2018
  • Infrared(IR) heating has many advantages, such as energy efficiency, reduced heating time, cleanliness, equipment compactness, high drying rate and easy automation. These features of IR heating provide widely industrial applications, such as surface heat treatment in semiconductor fabrication, thermoforming of polymers, drying and disinfection of food products, heating to metal forging, and drying of wet materials. In this study, the characteristics of a protected gold mirror were examined by spectrophotometer and the lifetime of the coating layers were evaluated by a cross-cutting method and salt spray test. The effects of manufacturing conditions on the protected gold mirror were seen and remedies for these effects were noted in order to improve the properties of the protected gold mirror in the drying process. The reflectance and lifetime of the protected gold mirror was influenced by manufacturing conditions, such as surface roughness and forming conditions of the anti-oxide layer, the adhesion layer, the reflecting layer and the protection layer. The results of this study showed that the protected gold mirror manufactured using a buffing method for pre-treatment resulted in the most effective reflectance. In addition, $Al_2O_3$ coating on an Al substrate as an anti-oxide layer was more effective than the anodizing process in the test of reflectance. Furthermore, the protected gold mirror manufactured by layers forming of various materials resulted in the most effective reflectance and lifetime when coated with $Al_2O_3$ as the anti-oxide layer, coated Cr as the adhesion layer, and coated $MgF_2$ as the protection layer.

Corrosion Resistance of Galvanized Steel by Treating Modified Si Organic/Inorganic Hybrid Coating Solution (Si 변성 유/무기 하이브리드 코팅액에 의한 아연도금강판의 내식특성)

  • Seo, Hyun-Soo;Moon, Hee-Joon;Kim, Jung-Ryang;Kim, Jong-Soon;Ahn, Seok-Hwan;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • Galvanized steel has gone through a chemical process to keep it from corroding. The steel gets coated in layers of zinc because rust will not attack this protective metal. For countless outdoor, marine, or industrial applications, galvanized steel is an essential fabrication component. The reduction of the corrosion rate of zinc is an important topic. In the past, a very popular way to reduce the corrosion rate of zinc was to use chemical conversion layers based on $Cr^{+6}$. However, a significant problem that has arisen is that the use of chromium salts is now restricted because of environmental protection legislation. Therefore, it is very important to develop new zinc surface treatments that are environmentally friendly to improve the corrosion resistance of zinc and adhesion with a final organic protective layer. In this study, a Urethane solution (only Urethane 20 wt.%; S-700) and an organic/inorganic solution with Si (Si polysilicate 10 wt.% + Urethane 10 wt.%; LRO-317) are used. Based on the salt spray test of 72 h, S-700 and LRO-317 had a superior effect for the corrosion resistance on EGI and HDGI, respectively.

A Study in the High Temperature Wear and Thermal Shock Resistance of the Functional Gradient Thermal Barrier Coating by Air Plasma Spray with ZrO$_2$ (APS법에 의한 경사기능성 지르코니아 열장벽 피막의 열충격 및 고온내마모 특성에 관한 연구)

  • 한추철;박만호;송요승;변응선;노병호;이구현;권식철
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.272-280
    • /
    • 1997
  • The Thermal Barrier Coation(TBC) to improve the that barrier and wear resistant propenrty in high temperature ofthe aircraftength between the accumlation of the aircraft engine and the automobile engine has usually the two layer structure. One is a creamic top layer for heat insulation and the other is a metal bond layer to facilitate the bond strength between the top ceramic layer and the substrate. But, the coated layers should be peeled off because of the accumulation of the thermal stress by the differance of the thermal expantion coefficient between metal and ceramics in a hrat cyclic environment. In this study, the intermediate layer by plasm spray process was introduced to reduce the thermal stress. The powders of plasm spray coating were the Yttria Stabilized Zirconia (YSZ), the Magnesia Stabillized Zirconia(MSZ) and NiCrAlY. the intermediate layer was sprayed with the powders of the bond cast for the purpose of test were executed. The high temperature wear resistance tends to decreasnceee wear and thermal shock test were exeucuted. The high temperature were resistance of the YSZ TBC is better that of the MSZ TBC. The wearrsistance tends to decrease accoring to incresing the temperature between $400^{\circ}C$to $600^{\circ}C$. The thermal shock life of the 3 layer TBC with YSZ top casting was the most outstanding thermal shock rsisstasnce. This means that the intermediate layer should play an importnat roll to alleviate the diffrerence of the thermal expansion coef frcients between metallic layer and cermics layer.

  • PDF

Morphologies of Brazed NiO-YSZ/316 Stainless Steel Using B-Ni2 Brazing Filler Alloy in a Solid Oxide Fuel Cell System

  • Lee, Sung-Kyu;Kang, Kyoung-Hoon;Hong, Hyun-Seon;Woo, Sang-Kook
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.430-436
    • /
    • 2011
  • Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-$999^{\circ}C$) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at $1080^{\circ}C$. Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 ${\mu}m$ compared to 100 ${\mu}m$ for electroless nickel-deposited NiO-YSZ cermet.

Electrochemical Characteristics of Carbon Coated SnO2-SiO2 Anode Materials (탄소 피복된 SnO2-SiO2 음극활물질의 전기화학적 특성)

  • Jeong, Gu-Hyun;Na, Byung-Ki
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • Tin-based materials for lithium ion battery have been proposed as new anode candidates owing to their higher specific capacity and relatively high lithium insertion potential. Tin-based materials have been extensively studied as possible replacements for carbon anodes in lithium ion batteries. However, the large volume expansion results in severe particle cracking with loss of electrical contact, giving irreversible capacity losses which prevent the widespread use of tin-based materials in lithium batteries. So remaining studies of tin-based materials are alleviating volume expansion and improving cycle performance. In this work, $SnO_2-SiO_2$ composites were manufactured with sol-gel method to overcome their volume expansion. Carbon was coated with 10 vol% propylene gas. The characteristics of active material and the effect of heat treatment were investigated with TG/DTA, XRD, SEM and FT-IR. Electrochemical characteristics of these composites were measured with CR2032 type coin cells. Carbon coated $SnO_2-SiO_2$at $300^{\circ}C$ heat treatment showed the best electrochemical performance.

Heat-treatment of Diffusional Behaviors of Plasma Spray Coated Layer for Fabrication of Abrasive Plates for Diamond (다이아몬드 가공을 위한 연마판의 제조 및 플라즈마 용사 코팅층의 열처리 거동)

  • Choi, Kwangsu;Yang, Seunga;Lee, Jong wan;Kim, Minkyu;Lee, Seong jun;Park, Joon Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.264-270
    • /
    • 2017
  • In this study, while the abrasive plates for diamond have been prepared through mechanical alloying and sintering of elemental powders, a fabrication route of plasma thermal coatings has been adopted for the first time. When diamond knife is sharped or polished, a metal plate has been applied, which is made of mechanical alloying and sintering. In this study, in order to develop a cost - effective manufacturing process, plasma coatings of FeCrNi and Ti on cast iron plate were applied together with Al intermediate layer coatings. The plasma coatings were successfully performed, and the optimum coating layer conditions were discussed in terms of micro-structural observations at the interfaces.