Browse > Article

Corrosion Behavior of $Y_2O_3$ Coating in an Electrolytic Reduction Process  

Cho, Soo-Haeng (Korea Atomic Energy Research Institute)
Hong, Sun-Seok (Korea Atomic Energy Research Institute)
Kang, Dae-Seung (Korea Atomic Energy Research Institute)
Jeong, Myeong-Soo (Korea Atomic Energy Research Institute)
Park, Byung-Heong (Korea Atomic Energy Research Institute)
Hur, Jin-Mok (Korea Atomic Energy Research Institute)
Lee, Han-Soo (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.8, no.1, 2010 , pp. 33-39 More about this Journal
Abstract
The electrolytic reduction of a spent oxide fuel involves a liberation of the oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the high molten salt. In this study, hot corrosion studies were performed on bare as well as coated superalloy specimens after exposure to lithium molten salt at $675^{\circ}C$ for 216 h under an oxidizing atmosphere. The IN713LC superalloy specimens were sprayed with an aluminized NiCrAlY bond coat and then with an $Y_2O_3$ top coat. The bare superalloy reveals an obvious weight loss due to spalling of the scale by the rapid scale growth and thermal stress. The chemical and thermal stability of the top coat has been found to be beneficial for increasing to the corrosion resistance of the structural materials for handling high temperature lithium molten salts.
Keywords
Plasma spray coating; yttria top coat; hot corrosion; structural material; electrolytic reduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Zhu, and G. Lindbergh, "Corrosion behavior of high-chromium ferritic steels in molten carbonate in cathode environment", Electrochim. Acta 46, pp. 2593-2604 (2001).
2 X. Ren, and F. Wang, "High-temperature oxidation and hot-corrosion behavior of a sputtered NiCrAlY coating with and without aluminizing", Surf. Coat. Technol. 201, pp. 30-37 (2006).   DOI   ScienceOn
3 S. Ling, T. A. Ramanarayan and R. PetkovicLuton, "Computational modeling of mixed oxidation-carburization processes", Oxid. Met. 40, pp. 179-196 (1993).   DOI   ScienceOn
4 Y. Harada, "High temperature Oxidation and High Temperature Corrosion of Metallic Materials: I. High Temperature Oxidation", Jpn. Therm. Spraying Soc. 33, pp. 128-134 (1996).
5 E. N. Bunting, Phase Diagrams for Ceramists, M. K. Reser (Ed.) American Ceramic Society, Ohio (1964) 121.
6 Y. N. Wu, P. L. Ke, Q. M. Wang, C. Sun, and F. H. Wang, "High temperature properties of thermal barrier coatings obtained by detonation spraying", Corros. Sci. 46, pp. 2925-2935(2004).   DOI   ScienceOn
7 C. H. Koo, C. Y. Bai, and Y. J. Luo, "The structure and high temperature corrosion behavior of pack aluminized coatings on superalloy IN-738LC", Mater. Chem. Phys. 86, pp. 258-268 (2004).   DOI   ScienceOn
8 A. M. Karlsson and A. G. Evans, "A numerical model for the cyclic instability of thermally grown oxides in thennal barrier systems", Acta mater. 49, pp. 1793-1804 (2001).   DOI   ScienceOn
9 L. Zhao, M. Parco, and E. Lugscheidor, "High velocity oxy-fuel thermal spraying of a NiCoCrAlY alloy", Surf. Coat. Technol. 179, pp. 272-278(2004).   DOI   ScienceOn
10 M. H. Guo, Q. M. Wang, P. L. Ke, J. Gong, C. Sun, R. F. Huang, and L. S. Wen, "The preparation and hot corrosion resistance of gradient NiCoCrAlYSiB coatings", Surf. Coat. Technol. 200, pp. 3942-3949 (2006).   DOI   ScienceOn
11 E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980).
12 D. A. Jones, Principles and Prevention of Corrosion, Macmillan Publishing Company, New York, 1992.
13 J. E. Indacochea, J. L. Smith, K. R Litko, E. J. KareH, and A. G. Raraz, " High-Temperature Oxidation and Corrosion of Structural materials in Molten Chlorides", Oxid. Met. 55, pp. 1-16 (2001).   DOI   ScienceOn
14 B. Wang, C. Sun, J. Gong, R. Huang, and L. Wen, "Oxidation behavior of the alloy IC-6 and protective coatings", Corros. Sci. 46, pp. 519-528 (2004).   DOI   ScienceOn
15 R. Mobarra, A. H. Jafari, and M. Karaminezhaad, "Hot corrosion behavior of MCrA1Y coatings on IN738LC", Surf. Coat. Technol. 201. pp. 2202-2207(2006).   DOI   ScienceOn
16 Q. M. Wang, Y. N. Wu, P. L. Ke, H. T. Cao, J. Gong, C. Sun, and L. S. Wen, "Hot corrosion behavior of AIP NiCoCrAlY(SiB) coatings on nickel base superalloys", Surf. Coat. Technol. 186, pp. 389-397 (2004).   DOI   ScienceOn
17 A. Ruh, and M. Spiegel, "Thermodynamic and kinetic consideration on the corrosion of Fe, Ni and Cr beneath a molten KCI-$ZnCl_2$ mixture", Corros. Sci. 48, pp. 679-695 (2006).   DOI   ScienceOn
18 J. G. Gonzalez, S. Haro, A. Martinez-Villafane, V. M. Salinas-Bravo, and J. Porcayo-Calderon," Corrosion performance of heat resistant alloys in $Na_{2}SO_{4}$-$V_{2}O_{5}$ molron sqalt", Mat. Sci. Eng. A 435-436, pp. 258-265(2006).   DOI   ScienceOn
19 M. Spiegel, P. Biedenkopf, and H. J. Grabke, "Corrosion of iron base alloys and high alloy steels in the $Li_{2}CO_{3}$-$K_{2}CO_{3}$eutectic mixture", Corros. Sci. 39, pp. 1193-1210(1997).   DOI   ScienceOn
20 B. P. Mohanty, and D. A. Shores, "Role of chlorides in hot corrosion of a cast Fe-Cr--Ni alloy. Part I: Experimental studies", Corros. Sci. 46, pp. 2893-2907 (2004).   DOI   ScienceOn
21 R. A. Rapp, "Hot corrosion of materials: a fluxing mechanism?", Corros. Sci. 44, pp. 209-221(2002).   DOI   ScienceOn
22 A. R. Shankar, U. K. Mudali, R. Sole, H. S. Khatak, and B. Raj," Plasma-sprayed yttria-stabilized zirconia coatings on type 316L stainless steel for pyrochemical reprocessing plant", J. Nucl. Mater. 372, pp. 226-232(2008).   DOI   ScienceOn
23 B. C. Wu, E. Chang, D. Tu, and S. L. Wang, "Microstructures, Properties and Failure Analysis of ($ZrO_2$-8wt.%$Y_{2}O_{3}$)/((Co, Ni)-Cr-Al-Y) Thermal barrier Coatings", Mat. Sci. Eng. A111, pp. 201-210(1989).
24 B. S. Sidhu, and S. Prakash, "Evaluation of the corrosion behavior of plasma-sprayed $Ni_{3}Al$ coatings on steel in oxidation and molten salt environments at $90^{\circ}C$", Surf. Coat. Technol. 166, pp. 89-100 (2003).   DOI   ScienceOn
25 M. A. Uusitalo, P. M. J. Vuoristo, and T. A. Mantyla, "High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits", Corros. Sci. 46, pp. 1311-1331(2004).   DOI   ScienceOn