DOI QR코드

DOI QR Code

Electrochemical Characteristics of Carbon Coated SnO2-SiO2 Anode Materials

탄소 피복된 SnO2-SiO2 음극활물질의 전기화학적 특성

  • Jeong, Gu-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 정구현 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2013.03.10
  • Accepted : 2013.03.12
  • Published : 2013.03.31

Abstract

Tin-based materials for lithium ion battery have been proposed as new anode candidates owing to their higher specific capacity and relatively high lithium insertion potential. Tin-based materials have been extensively studied as possible replacements for carbon anodes in lithium ion batteries. However, the large volume expansion results in severe particle cracking with loss of electrical contact, giving irreversible capacity losses which prevent the widespread use of tin-based materials in lithium batteries. So remaining studies of tin-based materials are alleviating volume expansion and improving cycle performance. In this work, $SnO_2-SiO_2$ composites were manufactured with sol-gel method to overcome their volume expansion. Carbon was coated with 10 vol% propylene gas. The characteristics of active material and the effect of heat treatment were investigated with TG/DTA, XRD, SEM and FT-IR. Electrochemical characteristics of these composites were measured with CR2032 type coin cells. Carbon coated $SnO_2-SiO_2$at $300^{\circ}C$ heat treatment showed the best electrochemical performance.

리튬이온전지에서 음극활물질의 저장용량을 증가시키기 위하여 주석산화물에 대한 연구가 많이 수행되고 있다. 주석산화물은 기존의 흑연 음극활물질보다 충방전 용량이 높다. 하지만 충방전이 진행되는 동안에 부피팽창률이 높아서 활물질이 파괴되는 현상이 나타나므로 과도한 비가역용량이 문제가 된다. 이를 해결하기 위하여 물리적 완충역할을 하는 물질이 첨가된 복합산화물을 제조하였다. $SnO_2-SiO_2$ 복합산화물을 솔-젤법을 이용하여 제조하였다. 10 vol% 프로필렌기체를 이용하여 탄소피복을 하여 전기전도성을 증가시켰다. TG/DTA, XRD, SEM과 FT-IR을 이용하여 제조된 물질의 물성을 분석하였으며, CR2032 코인셀을 제조하여 전기화학적인 특성을 조사하였다. $300^{\circ}C$로 열처리한 후에 탄소피복한 $SnO_2-SiO_2$ 활물질의 전기화학적 특성이 가장 우수하였다.

Keywords

References

  1. Park, J. K., Principles and Applicaions of Lithium Secondary Batteries, Hongrung Publishing Company, Seoul, 2010, pp. 115-176.
  2. Uchiyama, H., Hosono, E., Honma, I., Zhou, H., and Imai, H., "A Nanoscale Meshed Electrode of Single-crystalline SnO for Lithium-ion Rechargeable Batteries," Electrochem. Commun., 10, 52-55 (2008).
  3. Huang, H., Kelder, E. M., Chen, L., and Schoonman, J., "Electrochemical Characteristics of Sn1-$xSixO_2$ as Anode for Lithium-ion Batteries," J. Power Sources, 81-82, 362-367 (1999).
  4. Read, J., Foster, D., Wolfenstine, J., and Behl, W., "$SnO_2$-carbon Composites for Lithium-ion Battery Anodes," J. Power Sources, 96, 277-281 (2001). https://doi.org/10.1016/S0378-7753(00)00569-3
  5. Courtney, I., and Dahn, J. R., "Electrochemical and in situ X-ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites," J. Electrochem. Soc., 144, 2045-2052 (1997). https://doi.org/10.1149/1.1837740
  6. Kim, W. T., Lee, E. K., Cho, B. W., Lee, J. K., and Na, B. K., "Electrochemical Characterization of Tin Oxide Prepared by Microwave Heating," J. Korean Chem. Eng. Res., 46(6), 1119-1123 (2008).
  7. Tamura, N., Ohshita, R., Fujimoto, M., and Kamino, M., "Advanced Structures in Electrodeposited Tin Base Negative Electroes for Lithium Secondary Batteries," J. Electrochem. Soc., 150, A679-A678 (2003). https://doi.org/10.1149/1.1568108
  8. Winter, M., and Besenhard, J, O., "Electrochemical Lithiation of Tin and Tin-based Intermetallics and Composites," Electrochim. Acta, 45, 31-50 (1999). https://doi.org/10.1016/S0013-4686(99)00191-7
  9. Fu, L. J., Liu, H., Li, C., Wu, Y. P., Rahm, E., Holze, R., and Wu, H. Q., "Electrode Materials for Lithium Secondary Batteries Prepared by Sol-gel Methods," Prog. Mater. Sci., 50, 881-928 (2005). https://doi.org/10.1016/j.pmatsci.2005.04.002
  10. Kim, H. S., Chung, K. Y., and Cho, B. W., "Effects of Carboncoated Silicon/graphite Composite Anode on the Electrochemical Properties," Bull. Korean Chem. Soc., 29, 1965-1968 (2008). https://doi.org/10.5012/bkcs.2008.29.10.1965
  11. Kim, H. S., Chung, K. Y., and Cho, B. W., "Electrochemical Properties of Carbon-coated Si/B Composite Anode for Lithium Ion Batteries," J. Power Sources, 189, 108-113 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.045
  12. Kirszensztejn, P., Kawalko, A., Tolinka, A., and Przekop, R., "Synthesis of $SiO_2-SnO_2$ Gels in Water Free Conditions," J. Porous Mat., 18, 241-249 (2011). https://doi.org/10.1007/s10934-010-9376-2
  13. Cho, S. M., Kim, Y. T., Seo, Y. G., Yoon, H. D., Im, Y. M., and Yoon, D. H., "Optical Properties and Structural Analysis of $SiO_2$ Thick Films Deposited by Plasma Enhanced Chemical Vapor Depostion," J. Korean Ceramic. Soc., 39, 479-483 (2002). https://doi.org/10.4191/KCERS.2002.39.5.479
  14. Albonetti, S., Blachard, G., Burattin, P., Cavani, F., Masetti, S., and Trifiro, F., "Propane Ammoxidation to Acrylonitrile over a Tin-based Mixed-oxide Catalyst," Catal. Today, 42, 283-295 (1998). https://doi.org/10.1016/S0920-5861(98)00104-7
  15. Vu, B. K., Song, M. B., Park, S. A., Lee, Y. G., Ahn, I. Y., Suh, Y. W., Suh, D. J., Kim, W. I., Koh, H. L., Choi, Y. G., and Shin, E. W., "Electronic Density Enrichment of Pt Catalysts by Coke in the Propane Dehydrogenation," Korean J. Chem. Eng., 28, 383-387 (2011). https://doi.org/10.1007/s11814-010-0363-8

Cited by

  1. Electrochemical Characteristics of Ru Added Li4Ti5O12as an Anode Material vol.20, pp.4, 2014, https://doi.org/10.7464/ksct.2014.20.4.433