• Title/Summary/Keyword: Covert Channels

Search Result 11, Processing Time 0.019 seconds

Implementation of Covert Channel Using Mutex Shared Resources in Virtual Machine (가상머신 내 mutex 공유 자원을 이용한 은닉 채널 구현)

  • Ko, Ki-Wan;Choi, Hyoung-Kee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.961-971
    • /
    • 2019
  • Isolation between virtual machines in a cloud computing environment is an important security factor. The violation of isolation between virtual machines leads to interferences of shared resources and the implementation of covert channels. In this paper, the structure of Hyper-V hypervisor is analyzed to implement covert channels between virtual machines. Hyper-V uses a mutex technique for mutual exclusion between virtual machines. It indicates that isolation of virtual machines is violated and covert channels can be implemented due to mutex. We implemented several covert channels by designing a method for searching mutex resources applicable to Hyper-V with complex architectures. The mutex-based covert channel is not hardware dependent. If the covert channel is detected or defended, the defensive technique can be avoided by using the other covert channel among several covert channels.

Designing Rich-Secure Network Covert Timing Channels Based on Nested Lattices

  • Liu, Weiwei;Liu, Guangjie;Ji, Xiaopeng;Zhai, Jiangtao;Dai, Yuewei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1866-1883
    • /
    • 2019
  • As the youngest branch of information hiding, network covert timing channels conceal the existence of secret messages by manipulating the timing information of the overt traffic. The popular model-based framework for constructing covert timing channels always utilizes cumulative distribution function (CDF) of the inter-packet delays (IPDs) to modulate secret messages, whereas discards high-order statistics of the IPDs completely. The consequence is the vulnerability to high-order statistical tests, e.g., entropy test. In this study, a rich security model of covert timing channels is established based on IPD chains, which can be used to measure the distortion of multi-order timing statistics of a covert timing channel. To achieve rich security, we propose two types of covert timing channels based on nested lattices. The CDF of the IPDs is used to construct dot-lattice and interval-lattice for quantization, which can ensure the cell density of the lattice consistent with the joint distribution of the IPDs. Furthermore, compensative quantization and guard band strategy are employed to eliminate the regularity and enhance the robustness, respectively. Experimental results on real traffic show that the proposed schemes are rich-secure, and robust to channel interference, whereas some state-of-the-art covert timing channels cannot evade detection under the rich security model.

Covert Channel Based on Instruction Gadgets in Smart Sensing Devices

  • Ho, Jun-Won
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.56-59
    • /
    • 2017
  • In this paper, we design a covert channel based on instruction gadgets in smart sensing devices. Unlike the existing convert channels that usually utilize diverse physical characteristics or user behaviors or sensory data of smart sensing devices, we show that instruction gadgets could be exploited for covert channel establishment in smart sensing devices. In our devised covert channels, trojan smart sensing devices exchange attack packets in such a way that they encode an attack bit in attack packet to a series of addresses of instruction gadgets and decode an attack bit from a series of addresses of instruction gadgets.

Applying the Nash Equilibrium to Constructing Covert Channel in IoT

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.243-248
    • /
    • 2021
  • Although many different types of covert channels have been suggested in the literature, there are little work in directly applying game theory to building up covert channel. This is because researchers have mainly focused on tailoring game theory for covert channel analysis, identification, and covert channel problem solving. Unlike typical adaptation of game theory to covert channel, we show that game theory can be utilized to establish a new type of covert channel in IoT devices. More specifically, we propose a covert channel that can be constructed by utilizing the Nash Equilibrium with sensor data collected from IoT devices. For covert channel construction, we set random seed to the value of sensor data and make payoff from random number created by running pseudo random number generator with the configured random seed. We generate I × J (I ≥ 2, J ≥ 2) matrix game with these generated payoffs and attempt to obtain the Nash Equilibrium. Covert channel construction method is distinctly determined in accordance with whether or not to acquire the Nash Equilibrium.

Exploiting Correlation Characteristics to Detect Covert digital communication

  • Huang, Shuhua;Liu, Weiwei;Liu, Guangjie;Dai, Yuewei;Tian, Wen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3550-3566
    • /
    • 2020
  • As a widely used way to exfiltrate information, wireless covert channel (WCC) brings a serious threat to communication security, which enables the wireless communication process to bypass the authorized access control mechanism to disclose information. Unlike the covert channel on the network layer, wireless covert channels on the physical layer (WCC-P) is a new covert communication mode to implement and improve covert wireless communication. Existing WCC-P scheme modulates the secret message bits into the Gaussian noise, which is also called covert digital communication system based on the joint normal distribution (CJND). Finding the existence of this type of covert channel remains a challenging work due to its high undetectability. In this paper, we exploit the square autocorrelation coefficient (SAC) characteristic of the CJND signal to distinguish the covert communication from legitimate communication. We study the sharp increase of the SAC value when the offset is equal to the symbol length, which is caused by embedding secret information. Then, the SAC value of the measured sample is compared with the threshold value to determine whether the measured sample is CJND sample. When the signal-to-noise ratio reaches 20db, the detection accuracy can reach more than 90%.

A Study on the Covert Channel Detection in the TCP/IP Header based on the Support Vector Machine (Support Vector Machine 기반 TCP/IP 헤더의 은닉채널 탐지에 관한 연구)

  • 손태식;서정우;서정택;문종섭;최홍민
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2004
  • In explosively increasing internet environments, information security is one of the most important consideration. Nowadays, various security solutions are used as such problems countermeasure; IDS, Firewall and VPN. However, basically internet has much vulnerability of protocol itself. Specially, it is possible to establish a covert channel using TCP/IP header fields such as identification, sequence number, acknowledge number, timestamp and so on. In this Paper, we focus cm the covert channels using identification field of IP header and the sequence number field of TCP header. To detect such covert channels, we used Support Vector Machine which has excellent performance in pattern classification problems. Our experiments showed that proposed method could discern the abnormal cases(including covert channels) from normal TCP/IP traffic using Support Vector Machine.

Detection and Parameter Estimation for Jitterbug Covert Channel Based on Coefficient of Variation

  • Wang, Hao;Liu, Guangjie;Zhai, Jiangtao;Dai, Yuewei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1927-1943
    • /
    • 2016
  • Jitterbug is a passive network covert timing channel supplying reliable stealthy transmission. It is also the basic manner of some improved covert timing channels designed for higher undetectability. The existing entropy-based detection scheme based on training sample binning may suffer from model mismatching, which results in detection performance deterioration. In this paper, a new detection method based on the feature of Jitterbug covert channel traffic is proposed. A fixed binning strategy without training samples is used to obtain bins distribution feature. Coefficient of variation (CV) is calculated for several sets of selected bins and the weighted mean is used to calculate the final CV value to distinguish Jitterbug from normal traffic. Furthermore, the timing window parameter of Jitterbug is estimated based on the detected traffic. Experimental results show that the proposed detection method can achieve high detection performance even with interference of network jitter, and the parameter estimation method can provide accurate values after accumulating plenty of detected samples.

Turbo Equalization for Covert communication in Underwater Channel (터보등화를 이용한 직접대역확산통신 기반의 은밀 수중통신 성능분석)

  • Ahn, Tae-Seok;Jung, Ji-Won;Park, Tae-Doo;Lee, Dong-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1422-1430
    • /
    • 2016
  • Researches for oceans are limited to military purpose such as underwater sound detection and tracking system. Underwater acoustic communications with low-probability-of-interception (LPI) covert characteristics were received much attention recently. Covert communications are conducted at a low received signal-to-noise ratio to prevent interception or detection by an eavesdropper. This paper proposed optimal covert communication model based on direct sequence spread spectrum for underwater environments. Spread spectrum signals may be used for data transmission on underwater acoustic channels to achieve reliable transmission by suppressing the detrimental effect of interference and self-interference due to jamming and multipath propagation. The characteristics of the underwater acoustic channel present special problems in the design of covert communication systems. To improve performance and probability of interception, we applied BCJR(Bahl, Cocke, Jelinek, Raviv) decoding method and the direct sequence spread spectrum technology in low SNR. Also, we compared the performance between conventional model and proposed model based on turbo equalization by simulation and lake experiment.

Perception of Electronic News Media of Pakistan in the Digital Age

  • Saeed, Muzammil;Farooq, Tayyab;Khan, Muazam Ali;Mahmood, Nasir
    • Asian Journal for Public Opinion Research
    • /
    • v.9 no.3
    • /
    • pp.293-306
    • /
    • 2021
  • The news and views of Pakistani television channels are extensively shared on digital media for information or analysis where the general public discusses overt and covert agendas by mentioning their factual and presentational style. This study contributes to the contemporary studies of media perception through focus group interviews with 72 randomly selected master's and bachelor's students studying Media and Communication at the School of Media and Communication Studies, University of Management and Technology, Lahore, Pakistan to provide information about the feelings and observations of future journalists and media literates. In summary, the findings of our research exposed the negative perception of Pakistani electronic media among the participants due to what they perceived as biased, inaccurate, and unethical reporting.

The Confinement Problem: 40 Years Later

  • Crowell, Alex;Ng, Beng Heng;Fernandes, Earlence;Prakash, Atul
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.189-204
    • /
    • 2013
  • The confinement problem was first noted four decades ago. Since then, a huge amount of efforts have been spent on defining and mitigating the problem. The evolution of technologies from traditional operating systems to mobile and cloud computing brings about new security challenges. It is perhaps timely that we review the work that has been done. We discuss the foundational principles from classical works, as well as the efforts towards solving the confinement problem in three domains: operating systems, mobile computing, and cloud computing. While common issues exist across all three domains, unique challenges arise for each of them, which we discuss.