
  

J Inf Process Syst, Vol.9, No.2, June 2013 http://dx.doi.org/10.3745/JIPS.2013.9.2.189 

 

189 

The Confinement Problem: 40 Years Later 
  

Alex Crowell*, Beng Heng Ng*, Earlence Fernandes* and Atul Prakash* 
 

 
Abstract—The confinement problem was first noted four decades ago. Since then, a 

huge amount of efforts have been spent on defining and mitigating the problem. The 

evolution of technologies from traditional operating systems to mobile and cloud 

computing brings about new security challenges. It is perhaps timely that we review the 

work that has been done. We discuss the foundational principles from classical works, as 

well as the efforts towards solving the confinement problem in three domains: operating 

systems, mobile computing, and cloud computing. While common issues exist across all 

three domains, unique challenges arise for each of them, which we discuss. 
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1. INTRODUCTION 

In 1973, Lampson [1] first notes the confinement problem, which involves confining a pro-

gram’s execution to prevent it from leaking sensitive information to another program except its 

caller. Since then, there have been numerous works demonstrating that the confinement problem 

is far from solved, particularly with respect to covert channels [2-5]. 

To illustrate the confinement problem, suppose a bank provides banking services to its clients 

through customer service officers (CSO). A CSO needs to provide two security functions. First, 

he/she must ensure that a client cannot access information about other clients, i.e., when the 

CSO is accessing information on behalf of a client, it must only access information that the cli-

ent is authorized to access. Second, a CSO must not disclose a client’s information to another 

client who is not authorized to view it. One can thus view confinement as a mechanism for ad-

hering to the least privilege principle described by Saltzer and Schroeder [6], who stated that 

“every program and every user of the system should operate using the least set of privileges 

necessary to complete the job”. In the context of a typical operating system, a bank corresponds 

to an operating system that stores and processes sensitive information, a CSO corresponds to a 

process, and a client corresponds to a process owner, which can be another process or a human 

being. 

In this paper, we re-visit the foundational principles towards solving the confinement problem, 

and discuss the efforts towards solving the problem in three domains: operating systems, mobile 

computing, and cloud computing. The paper is organized as follows. In Section 2, we present 

classical works examining the confinement problem. In Section 3, we discuss information flow 
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control models. In Sections 4, 5, and 6, we examine the works done towards solving the problem 

in operating systems, mobile computing, and cloud computing respectively. We conclude in 

Section 7. 

 

 

2. FOUNDATIONAL PRINCIPLES 

The confinement problem is to prevent exfiltration of sensitive information. In attempting to 

characterize the confinement problem, Lampson lists seven methods by which information leaks 

can occur. 

 

1. A process that is able to store and return data to the caller at a later time, i.e., a process that 

has memory, can leak information. 

2. A process can write data to a permanent file that can be subsequently read by the process’s 

caller. 

3. A process can write data to a temporary file that can be subsequently read by the process’s 

caller. Alternatively, a process can leak information to its caller if it is able to create a tem-

porary file and the caller is able to test for existence of that temporary file. 

4. A process can send a message using inter-process communication to another process. 

5. If a process owner will be billed for the resources consumed by the process, information 

may be leaked by being encoded into the bills. 

6. Synchronization objects such as a shared boolean variable can be used to transmit infor-

mation between two processes. 

7. The ratio of computing to input/output or its paging rate can be used to transmit infor-

mation, albeit this method is noisy and will have low data rate. 

 

To achieve confinement, Lampson notes that total isolation is sufficient. In total isolation, a 

process is not allowed to call other processes, including system calls, and its execution must not 

be observable. This implies that the process does not output any results and does not require any 

resource such as processor, storage, and network. Clearly, this rule is overly restrictive and im-

practical. For example, in most practical scenarios, two processes share a single file system, 

allowing them to test for existence of specific files as a communication means. 

To relax the total isolation rule, one can postulate that if every process called by a confined 

process is also confined, then no leakage can occur. However, it is not possible to confine the 

operating system. Thus, further relaxation of the rule is necessary. Lampson suggests the transi-

tivity rule that states that if a confined process calls another untrusted process, then the untrusted 

process must also be confined. This implies that we require the operating system to be trustwor-

thy. Unfortunately, writing a trustworthy operating system is hard, since the number of possible 

channels for leaking information is large, although not infinite. To solve the confinement prob-

lem, it is necessary to identify these channels and ensure that they are blocked.  

 

2.1 Covert Channels 

Unfortunately, the channels can sometimes be obscure and may even involve collaboration 

between different entities. Not all of them can be determined easily using traditional code analy-

sis methods. Lampson proposes three categories of channels: storage, legitimate, and covert. 
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Storage channels refer to disk, memory, and cache. Legitimate channels include the bill for the 

resources used by the process, and covert channels refer to those that are not designed for infor-

mation transfer, such as CPU or memory usage. Kemmerer suggests characterizing the channels 

as either overt or covert instead [7]. In Kemmerer’s definition, an overt channel is one that stores 

information in data objects such as buffers, files, and I/O devices, while a covert channel uses 

non-data objects, such as file locks, device busy flags, and other observable states of a system. 

Thus, covert channels include storage and timing channels, differing from Lampson’s original 

note. However, Kemmerer’s definition is challenged by Wray, who argues that channels cannot 

be cleanly categorized as storage or timing channels, as they have aspects of both [8]. 

Lampson proposes that the masking principle is sufficient to block all legitimate and covert 

channels. The principle states that the caller of a confined process must be able to distinguish the 

process’s inputs into legitimate and covert channels. 

Lipner elaborates on the confinement problem and discusses methods for enumerating storage 

and legitimate channels from a policy and modeling perspective [9]. We discuss one of the most 

commonly applied models in Section 3. In the same paper, Lipner emphasizes the difficulties in 

enumerating covert channels. He notes that unless the models can capture all information flows, 

thus allowing accesses to be controlled via policies, covert channels can occur. Lipner also high-

lights that all processes have the means to extract timing information, thus resulting in timing 

channels. To close off timing channels, each process must be provided with a virtual time that 

solely depends on its own activities. For example, the time needed to execute a certain function 

must remain constant, i.e., not influenced by other processes. Unfortunately, this is hard to 

achieve since resource sharing occurs on almost every system. Besides, each user has a percep-

tion of real time outside the system. 

In an example of a covert channel, Shah et al. proposed Keyboard JitterBug, a keystroke log-

ger that varies the times at which keyboard events are sent to the host [10]. A receiver analyzes 

the variations by monitoring the host’s network traffic whenever there is an interactive network 

connection, thereby recovering the leaked data. 

Kemmerer noted that most methods proposed for discovering channels, such as [1, 9, 11-14], 

are ad-hoc [7]. Thus, one cannot be sure if all storage and timing channels are discovered. 

Kemmerer proposed the Shared Resource Matrix methodology, which aims to provide better 

assurance (without guarantee) that all channels have been found. The methodology first enumer-

ates all shared resources that can be accessed by a subject. One then determines all operation 

primitives of the system to generate the column headings of the Shared Resource Matrix, which 

is used for analyzing for presence of the channels. 

A yet more subtle form of attack is the side-channel attack. Kocher [15] demonstrates how 

critical information used for cryptographic algorithms can be extracted using timing attacks, i.e., 

by observing the times needed to perform certain operations, one can deduce the information 

being processed. Another example of a side-channel attack is differential power analysis [16, 

17]. 

 

 

3. INFORMATION FLOW CONTROL MODELS 

Several models have been proposed towards protecting sensitive information in Multi-Level 

Security (MLS) systems [18]. These models are also referred to as information flow control 
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models [19, 20], which differ from access control matrix models. Access control matrix models 

do not capture the security sensitivity of information in the objects. On the other hand, Chow et 

al. note that information flow control is concerned with how information is disseminated or 

propagated from one object to another [21]. 

In the information flow control models, the entities of a computer system are characterized as 

either subjects or objects. A subject is granted an access right as determined by a security policy 

to access an object [22]. The Bell-LaPadula model [23] is one of the most commonly used mod-

els, and we describe it briefly. In the model, security levels are ordered linearly, e.g., top secret, 

secret, confidential, and unclassified, where top secret corresponds to the highest security level 

and unclassified corresponds to the lowest security level. Each subject is associated with a clear-

ance level, while each object is assigned a security classification. The Bell-LaPadula model has 

the following properties, which are illustrated in an example in Figure 1, where a subject that 

has a clearance level of secret can only write to objects classified as top secret or secret, and can 

only read from objects classified as secret or confidential. 

 

·Simple Security Property: Also referred to as “no read up”. A subject can read an object if 

and only if the subject has clearance level that is equal to or higher than the security classi-

fication of the object. 

·*-property: Also referred to as “no write down”. A subject can write to an object if and only 

if the subject has a clearance level that is equal to or lower than the security classification 

of the object. 

 

Myers and Liskov propose using a decentralized model for information flow control [24]. In 

their work, they assume that the mechanism is reliable and efficient, and there exists a trusted 

execution platform functioning as trusted agents responsible for classifying/declassifying infor-

mation. Zeldovich et al. demonstrate that in the absence of the notion of superuser, one can still 

achieve Unix-like information flow control in their work on HiStar [25]. 

 

 

4. OPERATING SYSTEMS 

Actually achieving information confinement on commodity devices has been a topic of much 

research interest for decades. Some techniques that have been applied include the employment 

of information flow control features in the operating system, at different levels and in different 

 

Fig. 1.  An example showing that a subject can only write to objects at a higher or equal security 
level, i.e., Object and 2, and can only read from objects at a lower or equal security level, 
i.e., Object 2 and 3 

 

 



 

Alex Crowell, Beng Heng Ng, Earlence Fernandes and Atul Prakash 

 

193 

ways. These include mechanisms that operate at process granularity and those that operate at a 

finer granularity on data objects within individual processes (i.e., taint tracking). Virtualization 

is another tool that has been used to provide some level of isolation between processes based on 

their security contexts. In both cases, the handling of covert channels is still a very challenging 

task, and although many solutions do not even bother to address the issue, some have had vary-

ing degrees of success with addressing it. We discuss a selection of work from each of these 

categories below. 

 

4.1 Information Flow Control 

Although somewhat outside the scope of information flow control, one notable system for 

achieving some level of confinement is SELinux [26], which allows the definition of strict poli-

cies for what objects users and processes are permitted access to. The purpose of these policies 

is more as a measure for containing faults rather than containing sensitive data, but the same 

principles apply, since in both cases the goal is to prevent something from leaking to other com-

ponents of the system. 

SELinux is an extension to the Linux kernel, incorporated into its source in 2003, that enables 

mandatory access control policies on file, device, and other types of access on the system. Hypo-

thetically, a user who wishes to enforce containment of sensitive data could implement a policy 

on that data that restricts access to it to only those processes the user intends to feed it to as input. 

The user would then have to define policies for those processes that prevent them from leaking 

the data once it has been read as input; for example, access to network cards and IPC objects 

such as domain sockets could be denied. 

In this way, SELinux enables something close to what Lampson described for the masking 

principle, where the user describes which storage and legitimate channels may be accessed ex-

plicitly. It is important to note however, that this approach does not make covert channels ex-

plicit, and so they are not addressed at all. It is also very cumbersome to actually define such a 

policy that is capable of reliably restricting the sensitive data, and requires deep knowledge that 

only an expert is likely to possess. Furthermore, in the event the operating system is compro-

mised, an attacker operating from the kernel level could completely subvert any policies in place, 

making them effectively useless. In these ways, SELinux does not serve as a practical infor-

mation confinement solution for an average user. Nonetheless, its incorporation into the Linux 

kernel makes it freely available and easy to incorporate into real-world systems. 

The HiStar operating system [25] is another, more integrated approach to directly addressing 

information flow control. In HiStar, information flow is built into the operating system primi-

tives, with a labeling system that defines how information is allowed to flow between files, 

threads, and other system entities. One advantage of the design of HiStar is that most of the ker-

nel is implemented within the HiStar model, untrusted and running in user mode. Since only a 

small, vital part of the kernel is considered trusted, the attack surface in HiStar is greatly reduced 

from that of systems like SELinux, where the entire Linux kernel must be trusted. 

One interesting feature of HiStar is its flow permissions labeling system, which was adopted 

from earlier work on the Asbestos operating system [27]. Under the labeling system, permis-

sions can be defined in arbitrary “categories” by threads, which can be used to represent any 

conceivable permission, and one of 4 levels of privilege can be assigned to a permission, rough-

ly corresponding to the four permutations of read-write privileges, as well as a fifth distinct 
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owner’s privilege, which naturally grants read/write permission plus the ability to designate 

privileges to others for that category. Under this permission model, as illustrated in Figure 1, the 

general principle that manages information flow is that data must only flow from an object with 

one set of permissions to another object with at least that same set of permissions. 

In contrast to SELinux, storage-based covert channels are well addressed in the kernel design 

of HiStar. By modeling things as low-level as virtual memory and threads, and subsequently 

enforcing flow controls on these primitives, obvious covert channels are eliminated. HiStar does 

still suffer from timing-based and potentially other types of covert channels, which fall entirely 

outside the model devised for the operating system. Another much bigger drawback is that set-

ting permissions in HiStar is still a laborious effort for both developers and users as in SELinux. 

Developers must consciously design their software in modules that allow for the safe flow of 

data under reasonable permission settings. Furthermore, users must overcome the high learning 

curve of understanding the labeling system and then set permissions for each new application 

and file they create. Compounding these problems is the fact that HiStar is not fully UNIX com-

patible, and so software may need to be ported or rewritten to achieve compatibility with this 

unique environment. 

 

4.2 Virtualization 

Virtualization is another technology that has come to be seen as a possible security tool in ad-

dition to its usefulness for resource sharing. By providing a high degree of isolation between 

individual environments, containment of an entire operating system and all processes beneath it 

suddenly becomes much more possible than in a traditional single OS environment. 

One work that makes use of virtualization towards confinement is the Terra virtual machine 

platform [28]. Terra is a virtual machine monitor (VMM), that is, software that manages multi-

ple virtual machines, in order to provide isolation and privacy between them. What distinguishes 

Terra from normal VMMs is that there are two defined types of virtual machines that can run on 

Terra: “open boxes,” which have no real distinction with traditional VMs, and “closed boxes,” 

that are highly isolated to ensure privacy and integrity of their contents. The Trusted Platform 

Module [29] hardware is used to ensure isolation of the closed VMs from all other VMs. 

For a user on a machine running Terra, they would enforce isolation by performing different 

tasks on different VMs. Casual tasks that require no privacy such as simply browsing the web 

can be done in insecure open boxes, and the user can then switch to a closed box to perform 

sensitive computations or view and edit sensitive files. Although this is a good means of achiev-

ing actual containment of data, the strict isolation between VMs can also act as a hindrance to 

use. For example, a user who wants to download a file from over the Internet to a closed box 

may be unable to do so assuming Internet access is restricted, as it should be if confinement is a 

priority. But there shouldn’t any harm in this; it could easily be a perfectly legitimate action by a 

normal user. This leads to another weakness of Terra, which is its vulnerability to malicious 

software. Although the startup process is verified via the Trusted Platform Module, software that 

subsequently runs on the guest is not, opening the possibility of a malicious inside program leak-

ing data out of the machine. 

In a similar fashion, QubesOS [30] serves as a hybrid VMM and operating system, managing 

processes and providing each one with its own virtualized view of the underlying operating sys-

tem. The main difference with Terra is that processes from different VMs can be viewed on a 
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single screen as if they were operating in the same environment; they are all running the same 

operating system, although with different views of it. Faults are contained within the environ-

ment in which they occur, allowing for similar isolation to that achieved in Terra, and the Trust-

ed Platform Module is also used to provide authenticated boot. But this similarity also implies 

some of the same weaknesses as found in Terra. Namely, the focus is on preventing a compro-

mise that would have negative consequences, although no measures are taken to reduce the im-

pact of such a consequence if it were to occur. QubesOS does however provide a mechanism for 

transferring files between security domains on the machine, partially improving the usability 

drawbacks of such strong isolation. 

Storage Capsules [31, 32] aims to adapt virtualization-based solutions like Terra to a more 

convenient interface for users. Namely, a VMM manages a single untrusted guest operating sys-

tem, which can switch between secure and insecure modes in order to gain and lose access to 

sensitive data, which is stored in a secure VM with a communication channel to the guest VM. 

The Capsules architecture is illustrated in Figure 2. A VM in Capsules begins in insecure mode, 

with normal access to the network and typical machine features. Upon entering a key sequence, 

the VMM takes a snapshot of the machine and restricts network and other device access, putting 

the VM into secure mode, and enabling access to secure data. When the user is finished modify-

ing their secure data, the key sequence may be entered again to lose access to the data, restore 

the snapshot of machine state taken earlier during the initial transition, and regaining unrestrict-

ed access to network, storage, and other devices on the machine. 

One important point worth noting is that even in the event of a compromise of the operating 

system, Capsules is designed to still prevent the leak of data. Aside from covert channels, only a 

 

Fig. 2.  In Capsules, a user’s operating system runs in a virtual machine, managed by a trusted 
VMM. An additional (trusted) secure virtual machine is responsible for providing an interface 
to access secure data, stored in encrypted capsules, when the primary operating system is 
in secure mode. Under the Capsules threat model, the primary operating system is entirely 
untrusted. Figure is taken from [32]. 
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compromise of the VMM is capable of enabling this, making it more robust than the previously 

mentioned systems. Capsules also simplifies usability while maintaining strong isolation, in that 

a user can still access the files available to them in insecure mode (although they cannot write to 

them, as this would be an obvious path for leaking data) and are only unable to access the secure 

data outside of secure mode. 

Covert channels are discussed in great detail for Capsules in [31, 32], with many different 

storage and timing-based channels considered, and suggestions made for how they might be 

mitigated. The overhead over a normal system was also measured, and they found as much as a 

38% overhead for a simple test build of the Apache web server, but lower overheads for most 

other tasks. Additionally, they observed transition delays on the order of seconds both to and 

from the secure mode, resulting from the taking of snapshots upon entry and their restoration 

upon exit. Improvements in the transition times have been observed in later implementations. 

Secure Data Capsules, not to be confused with the Storage Capsules described earlier, is a 

proposal by Maniatis et al. that describes the conceptual architecture of secure data elements 

cryptographically protected and bundled with provenance and access control policies [33]. Their 

concept invokes the use of virtualization as a means of minimizing the trusted computing base 

by placing the isolation system below the operating system, and taint tracking is invoked as the 

solution to achieving fine-granularity knowledge of how the data is being used, for example 

whether it is about to be sent over the network. They discuss the many challenges that need to be 

overcome to achieve their vision, and acknowledge that covert channels are likely infeasible to 

prevent. 

 

 

5. MOBILE COMPUTING 

Mobile phones are the new computing revolution. They have progressed from simple devices 

the size of a brick that only made phone calls to wafer thin computing platforms that are capable 

of everything from making phone calls to reading email. Hence, it should come as no surprise 

that these devices contain a wealth of confidential and personal information. For example, use of 

mobile apps to perform mobile banking is common. The device possesses information of finan-

cial value. Mobile apps also manage confidential emails in the Bring-Your-Own-Device 

(BYOD) setting. Thus the informational content of these devices is high. These devices are vast-

ly different than desktops that are used to perform these computational tasks. Smartphones are 

more integrated with everyday life. People carry them everywhere and they have a multitude of 

sensors to perceive the environment. Smartphones also include many information-sharing chan-

nels like bluetooth, NFC and Wi-Fi. More importantly, several covert channels have been dis-

covered as well [34] that allow a device to infer keystrokes made by a user with the help of the 

device orientation. Keystroke data is sensitive as the user may be typing Internet banking pass-

words. Therefore, it is apparent that the study of information confinement in the context of 

smartphones is an interesting and challenging subject. In the coming sections, we explore sever-

al important results from the literature. 

 

5.1 Classical Information Flow Control 

A popular and effective technique to govern (and hence confine) information flow is taint 

propagation (also known as dynamic taint analysis) [35]. This method involves associating 
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metadata with a program variable, often referred to as a taint value. The taint value can be as 

simple or as complex a designer wishes it to be. However, adding complexity always has nega-

tive side-effects in terms of memory overhead. These taint values are then propagated through-

out the program, always tracking the variable it is associated with. For example, suppose the 

taint value for a program variable x is initialized to the value 1. This could signify that x contains 

sensitive data. Now x is assigned to another variable y. The taint of x will be transferred to y. 

The rules of taint transfer are governed by taint propagation rules. A taint transfer is effected 

only when the corresponding variables’ contents flow from one to another, possibly through 

transformations. The strength of taint propagation is that it is capable of tracking the taintedness 

of a variable through these transformations, including cryptographic operations. The use of this 

method in confining information is immediately obvious. If you can track something, you can 

confine its movements by imposing policies on how it flows. 

Enck et al. propose the TaintDroid system [36], which applies taint propagation to the An-

droid platform. TaintDroid proposes dynamic taint analysis to control how data flows between 

applications. TaintDroid is capable of tracking sources of specific tainted data. In TaintDroid, 

taints are statically associated with predefined data sources, such as the contact book, SMS mes-

sages, the phone number, the device identifier (IMEI), etc. TaintDroid limits the flow of tainted 

data by tracking the taints in the outbound network connections. However, TaintDroid is not 

capable of enforcing separation of operation modes. For instance, TaintDroid would treat private 

and work contacts as the same type (because they are tainted with the same taint) applying the 

same policy. Therefore it is not possible to have in TaintDroid corporate applications that can 

only access corporate data. The same holds true for private applications. 

Similar conclusions can be drawn for Paranoid Android [37]. Paranoid Android proposes 

tainting of data for runtime checks. In Paranoid Android security analysis is executed by a trust-

ed remote server, which hosts the replicas of smart phones in virtual environments. However, 

this approach has a severe impact on the device performance since execution traces have to be 

continuously sent to the remote servers. 

 

5.2 Inlined Reference Monitors 

Inlined Reference Monitors (IRM), introduced in [38], are reference monitors that are inter-

spersed with application code. A reference monitor is an entity that regulates access to resources. 

An example is the Android permission reference monitor. Whenever an application tries to read 

the location co-ordinates, for example, an implicit check is performed that verifies that the ap-

plication has the requisite permission. This monitor is outside the address space of the applica-

tion. An inlined monitor is inserted within the application code. Thus, it does not require chang-

es to the system code to implement security solutions. However, care must be taken that the 

application cannot subvert the mechanism by corrupting the code sections belonging to the mon-

itor. 

Aurasium [39] is a system by Xu et al that uses IRMs to implement security policies for the 

Android platform. The reference monitors are inserted via bytecode rewriting. On the Android 

platform, every high level framework service invoked is through Inter-process Communication 

(IPC). Thus, if an application requests for contacts data, it will take the form of an IPC request. 

Aurasium intercepts these IPC requests at the libc level and infers what high level action is be-

ing performed. It then makes a decision whether to allow the action or not. In the case of data 
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related actions, this becomes an information confinement solution. By interposing monitors on 

actions that access and disseminate information, control over its flow is achieved. However, it is 

worth noting that this method is not as fine grained as taint propagation. For example, it can 

only perform a security action for known information accesses. This means that if an application 

requests contacts data, the IRM can impose a policy at this point. If the policy accepted the ac-

tion, there is nothing to prevent the application from transmitting this data over the network. 

One may say that a network access policy is useful, but we point out that the IRM will not be 

able to distinguish data at the network interface. 

 

5.3 Lightweight Virtualization 

Providing data and execution isolation through virtualization is a very effective technique. 

Virtualization on desktop computers has existed for quite some time and it is considered a most-

ly solved problem. However, virtualization on mobile devices is a subject of research. The small 

form factor and limited battery life impose new usability restrictions. For example, simply hav-

ing a window on a desktop with the whole UI of the virtualized system contained within suffices. 

Such a model however, does not work for smartphone screens. Just imagine having to use a vir-

tualized system contained within a small window on an already (relatively) tiny screen. Another 

issue is that of power consumption. Today’s devices run sophisticated Operating Systems with a 

multitude of subsystems. Add to that, another complete (or possibly more than one) operating 

system, and battery life is comparable to a sand dune. This has motivated research into lighter 

weight virtualization systems. 

Russello et al. introduce MOSES [40], which is a lightweight virtualization mechanism. The 

system aims to tackle the problem of confining information to various operating modes. An ap-

plication can be in different operating modes at various times. For example, while at work, the 

Email application can be in “work” mode. While at home, it can be in “personal mode” allowing 

access to personal emails and not work related emails. This mode of use may sound familiar and 

is commonly known as the Bring-Your-Own-Device paradigm. In such settings, personal devic-

es are allowed access to confidential company secrets while an employee is at work. Any com-

promise of the device will directly compromise company data. Thus, strong information con-

finement guarantees are needed. MOSES uses a combination of taint propagation, reference 

monitors and filesystem namespaces to achieve isolation in a lightweight manner. Policies are 

used to specify different operating modes. The policies control the behavior of the reference 

monitors and taint trackers. For example, an Android application like Email, which stores emails 

in a database file, will have different views of the filesystem depending upon its operating mode. 

Furthermore, the policies (and hence operating modes) can be configured to switch automatical-

ly based on the physical context of the device. This is a form of access control known and con-

textual access control and we detail its applicability to information confinement in Section 5.4. 

Cells [41] by Andrus et al. proposes a lightweight virtual smartphone architecture for Android. 

A virtual-phone is the unit of abstraction and it is basically a complete Android user space. Cells 

is based on the concept of namespaces, which is also utilized by MOSES. Specifically, Cell in-

troduces the concept of device namespaces. These are namespaces for common Android devices 

such as the GPS, binder, and ashmem, among others. Each device driver is modified to maintain 

context information. Thus it has its own context when one virtual-phone is running. Cells also 

uses the recently introduced (in the linux kernel) UID namespace mechanism wherein processes 
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may have uid 0, but may not possess superuser privileges outside the context of its virtual-phone. 

Hence, Cells provides the same illusion as traditional desktop virtualization and has similar in-

formation confinement guarantees. Information from one virtual-phone cannot leak to another. 

However, any vulnerability in a program that needs real superuser privileges (for example, the 

volume daemon) running in a virtual-phone will compromise the base kernel. This is a funda-

mental difference between Cells and traditional virtualization mechanisms that contain separate 

kernels. 

  

5.4 Contextual Information Confinement 

Often, the context in which information is accessed is important. For example, a company 

may not want an employee to access work-related information by keying in passwords in a 

crowded place like a subway. There is a threat of information disclosure through channels such 

as shoulder surfing. Another example is that a person may not want to use Internet banking on 

public Wi-Fi. Such a form of access information control, which is based on the physical context 

of the device, is also referred to as contextual access control. A context may be defined as a 

collection of physical environmental factors that determine the state of the device. For example, 

GPS co-ordinates define the positional context of a device. Similarly, the accelerometer defines 

the orientation context of a device. 

Context Related Policy Enforcement (CRePE) for Android [42] is the first system that im-

plements contextual control for Android smartphones. The basic idea in such forms of infor-

mation confinement is that the reference monitor is made context aware through the use of con-

text aware policies. In CRePE, policies include an additional context component that indicates 

under what environmental situations the policy is to be considered active. For example, if the 

policy states that the camera can be accessed only within a range of 100m of some specified 

geographical co-ordinates, then any attempt to access the camera outside this range will not be 

allowed. Hence, one can imagine policies that confine when company related data is accessed. A 

logical choice would be to have a policy that allows the access of this information only when the 

device is physically located within the company premises and connected to a secure wireless 

network. 

 

 

6. CLOUD COMPUTING 

With cloud computing becoming commonplace, we can expect the confinement problem to 

exacerbate in the cloud. While numerous threats exist for the cloud as described by Vaquero et 

al. [43], we are primarily concerned with information leakage. Ristenpart et al. show how one 

can discover the internal cloud infrastructure for Amazon EC2, and estimate the location of a 

target VM [44]. The attacker can then instantiate new VMs on the same machine as the target to 

launch cross-VM side-channel attacks to extract information from the target. 

Besides inheriting the security issues commonly associated with individual components of the 

cloud, new issues arise. For example, since almost every resource, e.g., disk, memory, network, 

etc., is shared, the possibility for covert channels increases. As Aviram et al. puts it [45], timing 

channels is a security challenge in cloud computing because (i) massive parallelism making tim-

ing channels pervasive and hard to control, (ii) users can steal information from other users 

without leaving detectable trails, (iii) only the cloud provider has the means to detect and report 
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the attacks, although they are usually not incentivized to do so, (iv) resource partitioning can 

limit the statistical sharing efficiency that underpins the motivation for cloud computing. 

The threat model has also changed from one where the hardware, operating system, and in-

stalled applications can be trusted to one where these entities may be malicious. As examples of 

threats in the cloud, Mulazzani et al. examined cloud storage and found that Dropbox, a popular 

cloud storage service, is used to store copyright-protected files, and can be used to hide files in 

online slack space [46]. Wu et al. discussed an attack on cloud computing capable of high 

bandwidth and reliable data transmission in the cloud [47]. They improved on attacks using 

cache channels by proposing a pure timing-based data transmission scheme. They also exploited 

the memory bus to achieve the high bandwidth. 

Perez et al. propose virtualizing the Trusted Platform Module in their work on vTPM [48], 

thus allowing trusted computing for an unlimited number of virtual machines on a single hard-

ware platform. Towards solving the confinement problem in the cloud, Keller et al. note that 

most of the security issues in the cloud are because of the virtualization layer, i.e., sharing of 

resources [49]. Thus, they propose removing the virtualization layer, and suggest a NoHype 

architecture to achieve the same features required for virtualization using currently available 

hardware extensions to processors and I/O devices. 

Aviram et al. suggest using provider-enforced deterministic execution instead of resource par-

titioning to prevent computing the results of a task from being dependent on the execution tim-

ing [45]. 

Zhang et al. note that most clouds are implemented using commodity virtualized infrastruc-

tures, thus attacks can lead to leakage of sensitive data [50]. In their work on CloudVisor, they 

propose separating resource management from security protection in the virtualization layer. A 

security monitor is placed below a commodity virtual machine monitor using nested virtualiza-

tion to protect the hosted VMs. 

In the future, we believe more efforts will be invested towards providing security assurance in 

the applications provided by the cloud providers. One possible approach to achieve this may be 

to leverage hardware, which provides a small trusted computing base. While this may not elimi-

nate issues such as supply chain attacks, the bar for attacks by cloud providers is raised. 

 

 

7. CONCLUSION 

The confinement problem has led to numerous security issues, particularly covert channels. 

With almost every piece of information being digitized, mitigating the confinement problem, 

and thus preventing security issues, such as information leakages, becomes more critical than 

before. With the huge amount of efforts invested towards solving the problem, it is important 

that we review the works that have been done four decades after the problem was first defined 

formally, thus paving the way forward. We began our discussions of the confinement problem 

by providing a review of the classical works. Following that, we examined the confinement 

problem and efforts to solve it in three domains: operating system, mobile computing, and cloud 

computing. 
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