

J Inf Process Syst, Vol.9, No.2, June 2013 http://dx.doi.org/10.3745/JIPS.2013.9.2.189

189

The Confinement Problem: 40 Years Later

Alex Crowell*, Beng Heng Ng*, Earlence Fernandes* and Atul Prakash*

Abstract—The confinement problem was first noted four decades ago. Since then, a

huge amount of efforts have been spent on defining and mitigating the problem. The

evolution of technologies from traditional operating systems to mobile and cloud

computing brings about new security challenges. It is perhaps timely that we review the

work that has been done. We discuss the foundational principles from classical works, as

well as the efforts towards solving the confinement problem in three domains: operating

systems, mobile computing, and cloud computing. While common issues exist across all

three domains, unique challenges arise for each of them, which we discuss.

Keywords—Confinement Problem, Covert Channels, Virtualization, Isolation, Taint
Tracking

1. INTRODUCTION

In 1973, Lampson [1] first notes the confinement problem, which involves confining a pro-

gram’s execution to prevent it from leaking sensitive information to another program except its

caller. Since then, there have been numerous works demonstrating that the confinement problem

is far from solved, particularly with respect to covert channels [2-5].

To illustrate the confinement problem, suppose a bank provides banking services to its clients

through customer service officers (CSO). A CSO needs to provide two security functions. First,

he/she must ensure that a client cannot access information about other clients, i.e., when the

CSO is accessing information on behalf of a client, it must only access information that the cli-

ent is authorized to access. Second, a CSO must not disclose a client’s information to another

client who is not authorized to view it. One can thus view confinement as a mechanism for ad-

hering to the least privilege principle described by Saltzer and Schroeder [6], who stated that

“every program and every user of the system should operate using the least set of privileges

necessary to complete the job”. In the context of a typical operating system, a bank corresponds

to an operating system that stores and processes sensitive information, a CSO corresponds to a

process, and a client corresponds to a process owner, which can be another process or a human

being.

In this paper, we re-visit the foundational principles towards solving the confinement problem,

and discuss the efforts towards solving the problem in three domains: operating systems, mobile

computing, and cloud computing. The paper is organized as follows. In Section 2, we present

classical works examining the confinement problem. In Section 3, we discuss information flow

Manuscript received May 21, 2013; accepted June 4, 2013.

Corresponding Author: Atul Prakash

* Dept. of Computer Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA (crowella@

umich.edu, bengheng@eecs.umich.edu, earlence@umich.edu, aprakash@umich.edu)

Copyright ⓒ 2013 KIPS

pISSN 1976-913X
eISSN 2092-805X

Invited Paper

The Confinement Problem: 40 Years Later

190

control models. In Sections 4, 5, and 6, we examine the works done towards solving the problem

in operating systems, mobile computing, and cloud computing respectively. We conclude in

Section 7.

2. FOUNDATIONAL PRINCIPLES

The confinement problem is to prevent exfiltration of sensitive information. In attempting to

characterize the confinement problem, Lampson lists seven methods by which information leaks

can occur.

1. A process that is able to store and return data to the caller at a later time, i.e., a process that

has memory, can leak information.

2. A process can write data to a permanent file that can be subsequently read by the process’s

caller.

3. A process can write data to a temporary file that can be subsequently read by the process’s

caller. Alternatively, a process can leak information to its caller if it is able to create a tem-

porary file and the caller is able to test for existence of that temporary file.

4. A process can send a message using inter-process communication to another process.

5. If a process owner will be billed for the resources consumed by the process, information

may be leaked by being encoded into the bills.

6. Synchronization objects such as a shared boolean variable can be used to transmit infor-

mation between two processes.

7. The ratio of computing to input/output or its paging rate can be used to transmit infor-

mation, albeit this method is noisy and will have low data rate.

To achieve confinement, Lampson notes that total isolation is sufficient. In total isolation, a

process is not allowed to call other processes, including system calls, and its execution must not

be observable. This implies that the process does not output any results and does not require any

resource such as processor, storage, and network. Clearly, this rule is overly restrictive and im-

practical. For example, in most practical scenarios, two processes share a single file system,

allowing them to test for existence of specific files as a communication means.

To relax the total isolation rule, one can postulate that if every process called by a confined

process is also confined, then no leakage can occur. However, it is not possible to confine the

operating system. Thus, further relaxation of the rule is necessary. Lampson suggests the transi-

tivity rule that states that if a confined process calls another untrusted process, then the untrusted

process must also be confined. This implies that we require the operating system to be trustwor-

thy. Unfortunately, writing a trustworthy operating system is hard, since the number of possible

channels for leaking information is large, although not infinite. To solve the confinement prob-

lem, it is necessary to identify these channels and ensure that they are blocked.

2.1 Covert Channels

Unfortunately, the channels can sometimes be obscure and may even involve collaboration

between different entities. Not all of them can be determined easily using traditional code analy-

sis methods. Lampson proposes three categories of channels: storage, legitimate, and covert.

Alex Crowell, Beng Heng Ng, Earlence Fernandes and Atul Prakash

191

Storage channels refer to disk, memory, and cache. Legitimate channels include the bill for the

resources used by the process, and covert channels refer to those that are not designed for infor-

mation transfer, such as CPU or memory usage. Kemmerer suggests characterizing the channels

as either overt or covert instead [7]. In Kemmerer’s definition, an overt channel is one that stores

information in data objects such as buffers, files, and I/O devices, while a covert channel uses

non-data objects, such as file locks, device busy flags, and other observable states of a system.

Thus, covert channels include storage and timing channels, differing from Lampson’s original

note. However, Kemmerer’s definition is challenged by Wray, who argues that channels cannot

be cleanly categorized as storage or timing channels, as they have aspects of both [8].

Lampson proposes that the masking principle is sufficient to block all legitimate and covert

channels. The principle states that the caller of a confined process must be able to distinguish the

process’s inputs into legitimate and covert channels.

Lipner elaborates on the confinement problem and discusses methods for enumerating storage

and legitimate channels from a policy and modeling perspective [9]. We discuss one of the most

commonly applied models in Section 3. In the same paper, Lipner emphasizes the difficulties in

enumerating covert channels. He notes that unless the models can capture all information flows,

thus allowing accesses to be controlled via policies, covert channels can occur. Lipner also high-

lights that all processes have the means to extract timing information, thus resulting in timing

channels. To close off timing channels, each process must be provided with a virtual time that

solely depends on its own activities. For example, the time needed to execute a certain function

must remain constant, i.e., not influenced by other processes. Unfortunately, this is hard to

achieve since resource sharing occurs on almost every system. Besides, each user has a percep-

tion of real time outside the system.

In an example of a covert channel, Shah et al. proposed Keyboard JitterBug, a keystroke log-

ger that varies the times at which keyboard events are sent to the host [10]. A receiver analyzes

the variations by monitoring the host’s network traffic whenever there is an interactive network

connection, thereby recovering the leaked data.

Kemmerer noted that most methods proposed for discovering channels, such as [1, 9, 11-14],

are ad-hoc [7]. Thus, one cannot be sure if all storage and timing channels are discovered.

Kemmerer proposed the Shared Resource Matrix methodology, which aims to provide better

assurance (without guarantee) that all channels have been found. The methodology first enumer-

ates all shared resources that can be accessed by a subject. One then determines all operation

primitives of the system to generate the column headings of the Shared Resource Matrix, which

is used for analyzing for presence of the channels.

A yet more subtle form of attack is the side-channel attack. Kocher [15] demonstrates how

critical information used for cryptographic algorithms can be extracted using timing attacks, i.e.,

by observing the times needed to perform certain operations, one can deduce the information

being processed. Another example of a side-channel attack is differential power analysis [16,

17].

3. INFORMATION FLOW CONTROL MODELS

Several models have been proposed towards protecting sensitive information in Multi-Level

Security (MLS) systems [18]. These models are also referred to as information flow control

The Confinement Problem: 40 Years Later

192

models [19, 20], which differ from access control matrix models. Access control matrix models

do not capture the security sensitivity of information in the objects. On the other hand, Chow et

al. note that information flow control is concerned with how information is disseminated or

propagated from one object to another [21].

In the information flow control models, the entities of a computer system are characterized as

either subjects or objects. A subject is granted an access right as determined by a security policy

to access an object [22]. The Bell-LaPadula model [23] is one of the most commonly used mod-

els, and we describe it briefly. In the model, security levels are ordered linearly, e.g., top secret,

secret, confidential, and unclassified, where top secret corresponds to the highest security level

and unclassified corresponds to the lowest security level. Each subject is associated with a clear-

ance level, while each object is assigned a security classification. The Bell-LaPadula model has

the following properties, which are illustrated in an example in Figure 1, where a subject that

has a clearance level of secret can only write to objects classified as top secret or secret, and can

only read from objects classified as secret or confidential.

·Simple Security Property: Also referred to as “no read up”. A subject can read an object if

and only if the subject has clearance level that is equal to or higher than the security classi-

fication of the object.

·*-property: Also referred to as “no write down”. A subject can write to an object if and only

if the subject has a clearance level that is equal to or lower than the security classification

of the object.

Myers and Liskov propose using a decentralized model for information flow control [24]. In

their work, they assume that the mechanism is reliable and efficient, and there exists a trusted

execution platform functioning as trusted agents responsible for classifying/declassifying infor-

mation. Zeldovich et al. demonstrate that in the absence of the notion of superuser, one can still

achieve Unix-like information flow control in their work on HiStar [25].

4. OPERATING SYSTEMS

Actually achieving information confinement on commodity devices has been a topic of much

research interest for decades. Some techniques that have been applied include the employment

of information flow control features in the operating system, at different levels and in different

Fig. 1. An example showing that a subject can only write to objects at a higher or equal security
level, i.e., Object and 2, and can only read from objects at a lower or equal security level,
i.e., Object 2 and 3

Alex Crowell, Beng Heng Ng, Earlence Fernandes and Atul Prakash

193

ways. These include mechanisms that operate at process granularity and those that operate at a

finer granularity on data objects within individual processes (i.e., taint tracking). Virtualization

is another tool that has been used to provide some level of isolation between processes based on

their security contexts. In both cases, the handling of covert channels is still a very challenging

task, and although many solutions do not even bother to address the issue, some have had vary-

ing degrees of success with addressing it. We discuss a selection of work from each of these

categories below.

4.1 Information Flow Control

Although somewhat outside the scope of information flow control, one notable system for

achieving some level of confinement is SELinux [26], which allows the definition of strict poli-

cies for what objects users and processes are permitted access to. The purpose of these policies

is more as a measure for containing faults rather than containing sensitive data, but the same

principles apply, since in both cases the goal is to prevent something from leaking to other com-

ponents of the system.

SELinux is an extension to the Linux kernel, incorporated into its source in 2003, that enables

mandatory access control policies on file, device, and other types of access on the system. Hypo-

thetically, a user who wishes to enforce containment of sensitive data could implement a policy

on that data that restricts access to it to only those processes the user intends to feed it to as input.

The user would then have to define policies for those processes that prevent them from leaking

the data once it has been read as input; for example, access to network cards and IPC objects

such as domain sockets could be denied.

In this way, SELinux enables something close to what Lampson described for the masking

principle, where the user describes which storage and legitimate channels may be accessed ex-

plicitly. It is important to note however, that this approach does not make covert channels ex-

plicit, and so they are not addressed at all. It is also very cumbersome to actually define such a

policy that is capable of reliably restricting the sensitive data, and requires deep knowledge that

only an expert is likely to possess. Furthermore, in the event the operating system is compro-

mised, an attacker operating from the kernel level could completely subvert any policies in place,

making them effectively useless. In these ways, SELinux does not serve as a practical infor-

mation confinement solution for an average user. Nonetheless, its incorporation into the Linux

kernel makes it freely available and easy to incorporate into real-world systems.

The HiStar operating system [25] is another, more integrated approach to directly addressing

information flow control. In HiStar, information flow is built into the operating system primi-

tives, with a labeling system that defines how information is allowed to flow between files,

threads, and other system entities. One advantage of the design of HiStar is that most of the ker-

nel is implemented within the HiStar model, untrusted and running in user mode. Since only a

small, vital part of the kernel is considered trusted, the attack surface in HiStar is greatly reduced

from that of systems like SELinux, where the entire Linux kernel must be trusted.

One interesting feature of HiStar is its flow permissions labeling system, which was adopted

from earlier work on the Asbestos operating system [27]. Under the labeling system, permis-

sions can be defined in arbitrary “categories” by threads, which can be used to represent any

conceivable permission, and one of 4 levels of privilege can be assigned to a permission, rough-

ly corresponding to the four permutations of read-write privileges, as well as a fifth distinct

The Confinement Problem: 40 Years Later

194

owner’s privilege, which naturally grants read/write permission plus the ability to designate

privileges to others for that category. Under this permission model, as illustrated in Figure 1, the

general principle that manages information flow is that data must only flow from an object with

one set of permissions to another object with at least that same set of permissions.

In contrast to SELinux, storage-based covert channels are well addressed in the kernel design

of HiStar. By modeling things as low-level as virtual memory and threads, and subsequently

enforcing flow controls on these primitives, obvious covert channels are eliminated. HiStar does

still suffer from timing-based and potentially other types of covert channels, which fall entirely

outside the model devised for the operating system. Another much bigger drawback is that set-

ting permissions in HiStar is still a laborious effort for both developers and users as in SELinux.

Developers must consciously design their software in modules that allow for the safe flow of

data under reasonable permission settings. Furthermore, users must overcome the high learning

curve of understanding the labeling system and then set permissions for each new application

and file they create. Compounding these problems is the fact that HiStar is not fully UNIX com-

patible, and so software may need to be ported or rewritten to achieve compatibility with this

unique environment.

4.2 Virtualization

Virtualization is another technology that has come to be seen as a possible security tool in ad-

dition to its usefulness for resource sharing. By providing a high degree of isolation between

individual environments, containment of an entire operating system and all processes beneath it

suddenly becomes much more possible than in a traditional single OS environment.

One work that makes use of virtualization towards confinement is the Terra virtual machine

platform [28]. Terra is a virtual machine monitor (VMM), that is, software that manages multi-

ple virtual machines, in order to provide isolation and privacy between them. What distinguishes

Terra from normal VMMs is that there are two defined types of virtual machines that can run on

Terra: “open boxes,” which have no real distinction with traditional VMs, and “closed boxes,”

that are highly isolated to ensure privacy and integrity of their contents. The Trusted Platform

Module [29] hardware is used to ensure isolation of the closed VMs from all other VMs.

For a user on a machine running Terra, they would enforce isolation by performing different

tasks on different VMs. Casual tasks that require no privacy such as simply browsing the web

can be done in insecure open boxes, and the user can then switch to a closed box to perform

sensitive computations or view and edit sensitive files. Although this is a good means of achiev-

ing actual containment of data, the strict isolation between VMs can also act as a hindrance to

use. For example, a user who wants to download a file from over the Internet to a closed box

may be unable to do so assuming Internet access is restricted, as it should be if confinement is a

priority. But there shouldn’t any harm in this; it could easily be a perfectly legitimate action by a

normal user. This leads to another weakness of Terra, which is its vulnerability to malicious

software. Although the startup process is verified via the Trusted Platform Module, software that

subsequently runs on the guest is not, opening the possibility of a malicious inside program leak-

ing data out of the machine.

In a similar fashion, QubesOS [30] serves as a hybrid VMM and operating system, managing

processes and providing each one with its own virtualized view of the underlying operating sys-

tem. The main difference with Terra is that processes from different VMs can be viewed on a

Alex Crowell, Beng Heng Ng, Earlence Fernandes and Atul Prakash

195

single screen as if they were operating in the same environment; they are all running the same

operating system, although with different views of it. Faults are contained within the environ-

ment in which they occur, allowing for similar isolation to that achieved in Terra, and the Trust-

ed Platform Module is also used to provide authenticated boot. But this similarity also implies

some of the same weaknesses as found in Terra. Namely, the focus is on preventing a compro-

mise that would have negative consequences, although no measures are taken to reduce the im-

pact of such a consequence if it were to occur. QubesOS does however provide a mechanism for

transferring files between security domains on the machine, partially improving the usability

drawbacks of such strong isolation.

Storage Capsules [31, 32] aims to adapt virtualization-based solutions like Terra to a more

convenient interface for users. Namely, a VMM manages a single untrusted guest operating sys-

tem, which can switch between secure and insecure modes in order to gain and lose access to

sensitive data, which is stored in a secure VM with a communication channel to the guest VM.

The Capsules architecture is illustrated in Figure 2. A VM in Capsules begins in insecure mode,

with normal access to the network and typical machine features. Upon entering a key sequence,

the VMM takes a snapshot of the machine and restricts network and other device access, putting

the VM into secure mode, and enabling access to secure data. When the user is finished modify-

ing their secure data, the key sequence may be entered again to lose access to the data, restore

the snapshot of machine state taken earlier during the initial transition, and regaining unrestrict-

ed access to network, storage, and other devices on the machine.

One important point worth noting is that even in the event of a compromise of the operating

system, Capsules is designed to still prevent the leak of data. Aside from covert channels, only a

Fig. 2. In Capsules, a user’s operating system runs in a virtual machine, managed by a trusted
VMM. An additional (trusted) secure virtual machine is responsible for providing an interface
to access secure data, stored in encrypted capsules, when the primary operating system is
in secure mode. Under the Capsules threat model, the primary operating system is entirely
untrusted. Figure is taken from [32].

The Confinement Problem: 40 Years Later

196

compromise of the VMM is capable of enabling this, making it more robust than the previously

mentioned systems. Capsules also simplifies usability while maintaining strong isolation, in that

a user can still access the files available to them in insecure mode (although they cannot write to

them, as this would be an obvious path for leaking data) and are only unable to access the secure

data outside of secure mode.

Covert channels are discussed in great detail for Capsules in [31, 32], with many different

storage and timing-based channels considered, and suggestions made for how they might be

mitigated. The overhead over a normal system was also measured, and they found as much as a

38% overhead for a simple test build of the Apache web server, but lower overheads for most

other tasks. Additionally, they observed transition delays on the order of seconds both to and

from the secure mode, resulting from the taking of snapshots upon entry and their restoration

upon exit. Improvements in the transition times have been observed in later implementations.

Secure Data Capsules, not to be confused with the Storage Capsules described earlier, is a

proposal by Maniatis et al. that describes the conceptual architecture of secure data elements

cryptographically protected and bundled with provenance and access control policies [33]. Their

concept invokes the use of virtualization as a means of minimizing the trusted computing base

by placing the isolation system below the operating system, and taint tracking is invoked as the

solution to achieving fine-granularity knowledge of how the data is being used, for example

whether it is about to be sent over the network. They discuss the many challenges that need to be

overcome to achieve their vision, and acknowledge that covert channels are likely infeasible to

prevent.

5. MOBILE COMPUTING

Mobile phones are the new computing revolution. They have progressed from simple devices

the size of a brick that only made phone calls to wafer thin computing platforms that are capable

of everything from making phone calls to reading email. Hence, it should come as no surprise

that these devices contain a wealth of confidential and personal information. For example, use of

mobile apps to perform mobile banking is common. The device possesses information of finan-

cial value. Mobile apps also manage confidential emails in the Bring-Your-Own-Device

(BYOD) setting. Thus the informational content of these devices is high. These devices are vast-

ly different than desktops that are used to perform these computational tasks. Smartphones are

more integrated with everyday life. People carry them everywhere and they have a multitude of

sensors to perceive the environment. Smartphones also include many information-sharing chan-

nels like bluetooth, NFC and Wi-Fi. More importantly, several covert channels have been dis-

covered as well [34] that allow a device to infer keystrokes made by a user with the help of the

device orientation. Keystroke data is sensitive as the user may be typing Internet banking pass-

words. Therefore, it is apparent that the study of information confinement in the context of

smartphones is an interesting and challenging subject. In the coming sections, we explore sever-

al important results from the literature.

5.1 Classical Information Flow Control

A popular and effective technique to govern (and hence confine) information flow is taint

propagation (also known as dynamic taint analysis) [35]. This method involves associating

Alex Crowell, Beng Heng Ng, Earlence Fernandes and Atul Prakash

197

metadata with a program variable, often referred to as a taint value. The taint value can be as

simple or as complex a designer wishes it to be. However, adding complexity always has nega-

tive side-effects in terms of memory overhead. These taint values are then propagated through-

out the program, always tracking the variable it is associated with. For example, suppose the

taint value for a program variable x is initialized to the value 1. This could signify that x contains

sensitive data. Now x is assigned to another variable y. The taint of x will be transferred to y.

The rules of taint transfer are governed by taint propagation rules. A taint transfer is effected

only when the corresponding variables’ contents flow from one to another, possibly through

transformations. The strength of taint propagation is that it is capable of tracking the taintedness

of a variable through these transformations, including cryptographic operations. The use of this

method in confining information is immediately obvious. If you can track something, you can

confine its movements by imposing policies on how it flows.

Enck et al. propose the TaintDroid system [36], which applies taint propagation to the An-

droid platform. TaintDroid proposes dynamic taint analysis to control how data flows between

applications. TaintDroid is capable of tracking sources of specific tainted data. In TaintDroid,

taints are statically associated with predefined data sources, such as the contact book, SMS mes-

sages, the phone number, the device identifier (IMEI), etc. TaintDroid limits the flow of tainted

data by tracking the taints in the outbound network connections. However, TaintDroid is not

capable of enforcing separation of operation modes. For instance, TaintDroid would treat private

and work contacts as the same type (because they are tainted with the same taint) applying the

same policy. Therefore it is not possible to have in TaintDroid corporate applications that can

only access corporate data. The same holds true for private applications.

Similar conclusions can be drawn for Paranoid Android [37]. Paranoid Android proposes

tainting of data for runtime checks. In Paranoid Android security analysis is executed by a trust-

ed remote server, which hosts the replicas of smart phones in virtual environments. However,

this approach has a severe impact on the device performance since execution traces have to be

continuously sent to the remote servers.

5.2 Inlined Reference Monitors

Inlined Reference Monitors (IRM), introduced in [38], are reference monitors that are inter-

spersed with application code. A reference monitor is an entity that regulates access to resources.

An example is the Android permission reference monitor. Whenever an application tries to read

the location co-ordinates, for example, an implicit check is performed that verifies that the ap-

plication has the requisite permission. This monitor is outside the address space of the applica-

tion. An inlined monitor is inserted within the application code. Thus, it does not require chang-

es to the system code to implement security solutions. However, care must be taken that the

application cannot subvert the mechanism by corrupting the code sections belonging to the mon-

itor.

Aurasium [39] is a system by Xu et al that uses IRMs to implement security policies for the

Android platform. The reference monitors are inserted via bytecode rewriting. On the Android

platform, every high level framework service invoked is through Inter-process Communication

(IPC). Thus, if an application requests for contacts data, it will take the form of an IPC request.

Aurasium intercepts these IPC requests at the libc level and infers what high level action is be-

ing performed. It then makes a decision whether to allow the action or not. In the case of data

The Confinement Problem: 40 Years Later

198

related actions, this becomes an information confinement solution. By interposing monitors on

actions that access and disseminate information, control over its flow is achieved. However, it is

worth noting that this method is not as fine grained as taint propagation. For example, it can

only perform a security action for known information accesses. This means that if an application

requests contacts data, the IRM can impose a policy at this point. If the policy accepted the ac-

tion, there is nothing to prevent the application from transmitting this data over the network.

One may say that a network access policy is useful, but we point out that the IRM will not be

able to distinguish data at the network interface.

5.3 Lightweight Virtualization

Providing data and execution isolation through virtualization is a very effective technique.

Virtualization on desktop computers has existed for quite some time and it is considered a most-

ly solved problem. However, virtualization on mobile devices is a subject of research. The small

form factor and limited battery life impose new usability restrictions. For example, simply hav-

ing a window on a desktop with the whole UI of the virtualized system contained within suffices.

Such a model however, does not work for smartphone screens. Just imagine having to use a vir-

tualized system contained within a small window on an already (relatively) tiny screen. Another

issue is that of power consumption. Today’s devices run sophisticated Operating Systems with a

multitude of subsystems. Add to that, another complete (or possibly more than one) operating

system, and battery life is comparable to a sand dune. This has motivated research into lighter

weight virtualization systems.

Russello et al. introduce MOSES [40], which is a lightweight virtualization mechanism. The

system aims to tackle the problem of confining information to various operating modes. An ap-

plication can be in different operating modes at various times. For example, while at work, the

Email application can be in “work” mode. While at home, it can be in “personal mode” allowing

access to personal emails and not work related emails. This mode of use may sound familiar and

is commonly known as the Bring-Your-Own-Device paradigm. In such settings, personal devic-

es are allowed access to confidential company secrets while an employee is at work. Any com-

promise of the device will directly compromise company data. Thus, strong information con-

finement guarantees are needed. MOSES uses a combination of taint propagation, reference

monitors and filesystem namespaces to achieve isolation in a lightweight manner. Policies are

used to specify different operating modes. The policies control the behavior of the reference

monitors and taint trackers. For example, an Android application like Email, which stores emails

in a database file, will have different views of the filesystem depending upon its operating mode.

Furthermore, the policies (and hence operating modes) can be configured to switch automatical-

ly based on the physical context of the device. This is a form of access control known and con-

textual access control and we detail its applicability to information confinement in Section 5.4.

Cells [41] by Andrus et al. proposes a lightweight virtual smartphone architecture for Android.

A virtual-phone is the unit of abstraction and it is basically a complete Android user space. Cells

is based on the concept of namespaces, which is also utilized by MOSES. Specifically, Cell in-

troduces the concept of device namespaces. These are namespaces for common Android devices

such as the GPS, binder, and ashmem, among others. Each device driver is modified to maintain

context information. Thus it has its own context when one virtual-phone is running. Cells also

uses the recently introduced (in the linux kernel) UID namespace mechanism wherein processes

Alex Crowell, Beng Heng Ng, Earlence Fernandes and Atul Prakash

199

may have uid 0, but may not possess superuser privileges outside the context of its virtual-phone.

Hence, Cells provides the same illusion as traditional desktop virtualization and has similar in-

formation confinement guarantees. Information from one virtual-phone cannot leak to another.

However, any vulnerability in a program that needs real superuser privileges (for example, the

volume daemon) running in a virtual-phone will compromise the base kernel. This is a funda-

mental difference between Cells and traditional virtualization mechanisms that contain separate

kernels.

5.4 Contextual Information Confinement

Often, the context in which information is accessed is important. For example, a company

may not want an employee to access work-related information by keying in passwords in a

crowded place like a subway. There is a threat of information disclosure through channels such

as shoulder surfing. Another example is that a person may not want to use Internet banking on

public Wi-Fi. Such a form of access information control, which is based on the physical context

of the device, is also referred to as contextual access control. A context may be defined as a

collection of physical environmental factors that determine the state of the device. For example,

GPS co-ordinates define the positional context of a device. Similarly, the accelerometer defines

the orientation context of a device.

Context Related Policy Enforcement (CRePE) for Android [42] is the first system that im-

plements contextual control for Android smartphones. The basic idea in such forms of infor-

mation confinement is that the reference monitor is made context aware through the use of con-

text aware policies. In CRePE, policies include an additional context component that indicates

under what environmental situations the policy is to be considered active. For example, if the

policy states that the camera can be accessed only within a range of 100m of some specified

geographical co-ordinates, then any attempt to access the camera outside this range will not be

allowed. Hence, one can imagine policies that confine when company related data is accessed. A

logical choice would be to have a policy that allows the access of this information only when the

device is physically located within the company premises and connected to a secure wireless

network.

6. CLOUD COMPUTING

With cloud computing becoming commonplace, we can expect the confinement problem to

exacerbate in the cloud. While numerous threats exist for the cloud as described by Vaquero et

al. [43], we are primarily concerned with information leakage. Ristenpart et al. show how one

can discover the internal cloud infrastructure for Amazon EC2, and estimate the location of a

target VM [44]. The attacker can then instantiate new VMs on the same machine as the target to

launch cross-VM side-channel attacks to extract information from the target.

Besides inheriting the security issues commonly associated with individual components of the

cloud, new issues arise. For example, since almost every resource, e.g., disk, memory, network,

etc., is shared, the possibility for covert channels increases. As Aviram et al. puts it [45], timing

channels is a security challenge in cloud computing because (i) massive parallelism making tim-

ing channels pervasive and hard to control, (ii) users can steal information from other users

without leaving detectable trails, (iii) only the cloud provider has the means to detect and report

The Confinement Problem: 40 Years Later

200

the attacks, although they are usually not incentivized to do so, (iv) resource partitioning can

limit the statistical sharing efficiency that underpins the motivation for cloud computing.

The threat model has also changed from one where the hardware, operating system, and in-

stalled applications can be trusted to one where these entities may be malicious. As examples of

threats in the cloud, Mulazzani et al. examined cloud storage and found that Dropbox, a popular

cloud storage service, is used to store copyright-protected files, and can be used to hide files in

online slack space [46]. Wu et al. discussed an attack on cloud computing capable of high

bandwidth and reliable data transmission in the cloud [47]. They improved on attacks using

cache channels by proposing a pure timing-based data transmission scheme. They also exploited

the memory bus to achieve the high bandwidth.

Perez et al. propose virtualizing the Trusted Platform Module in their work on vTPM [48],

thus allowing trusted computing for an unlimited number of virtual machines on a single hard-

ware platform. Towards solving the confinement problem in the cloud, Keller et al. note that

most of the security issues in the cloud are because of the virtualization layer, i.e., sharing of

resources [49]. Thus, they propose removing the virtualization layer, and suggest a NoHype

architecture to achieve the same features required for virtualization using currently available

hardware extensions to processors and I/O devices.

Aviram et al. suggest using provider-enforced deterministic execution instead of resource par-

titioning to prevent computing the results of a task from being dependent on the execution tim-

ing [45].

Zhang et al. note that most clouds are implemented using commodity virtualized infrastruc-

tures, thus attacks can lead to leakage of sensitive data [50]. In their work on CloudVisor, they

propose separating resource management from security protection in the virtualization layer. A

security monitor is placed below a commodity virtual machine monitor using nested virtualiza-

tion to protect the hosted VMs.

In the future, we believe more efforts will be invested towards providing security assurance in

the applications provided by the cloud providers. One possible approach to achieve this may be

to leverage hardware, which provides a small trusted computing base. While this may not elimi-

nate issues such as supply chain attacks, the bar for attacks by cloud providers is raised.

7. CONCLUSION

The confinement problem has led to numerous security issues, particularly covert channels.

With almost every piece of information being digitized, mitigating the confinement problem,

and thus preventing security issues, such as information leakages, becomes more critical than

before. With the huge amount of efforts invested towards solving the problem, it is important

that we review the works that have been done four decades after the problem was first defined

formally, thus paving the way forward. We began our discussions of the confinement problem

by providing a review of the classical works. Following that, we examined the confinement

problem and efforts to solve it in three domains: operating system, mobile computing, and cloud

computing.

Alex Crowell, Beng Heng Ng, Earlence Fernandes and Atul Prakash

201

REFERENCES

[1] Butler W. Lampson. A note on the confinement problem. Commun. ACM, 16(10):613-615, October

1973.

[2] Zhenghong Wang and Ruby B. Lee. Covert and Side Channels Due to Processor Architecture. In

Proceedings of the 22nd Annual Computer Security Applications Conference, ACSAC ’06, Washing-

ton, DC, USA, 2006. IEEE Computer Society, pp.473-482.

[3] Colin Percival. Cache missing for fun and profit. In Proc. of BSDCan 2005, 2005.

[4] Onur Aciicmez. Yet another MicroArchitectural Attack: exploiting ICache. In Proceedings of the

2007 ACM workshop on Computer security architecture, CSAW ’07, New York, NY, USA, 2007.

ACM, pp.11-18.

[5] Onur Aciicmez, Cetin Kaya Koc, and Jean-Pierre Seifert. Predicting secret keys via branch prediction.

In Proceedings of the 7th Cryptographers’ track at the RSA conference on Topics in Cryptology, CT-

RSA’07, Berlin, Heidelberg, 2006. Springer-Verlag, pp.225-242.

[6] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in Computer Systems.

1975.

[7] Richard A. Kemmerer. An Approach to Identifying Storage and Timing Channels. In ACM Transac-

tions on Computer Systems, 1983.

[8] J.C. Wray. An analysis of covert timing channels. In Research in Security and Privacy, 1991. Pro-

ceedings., 1991 IEEE Computer Society Symposium on, 1991, pp.2-7.

[9] Steven B. Lipner. A comment on the confinement problem. In Proceedings of the fifth ACM sympo-

sium on Operating systems principles, SOSP ’75, New York, NY, USA, 1975. ACM, pp.192-196.

[10] Gaurav Shah, Andres Molina, and Matt Blaze. Keyboards and covert channels. In Proceedings of the

2006 USENIX Security Symposium (July-August), 2006, pp.59-75.

[11] Jonathan K. Millen. Security Kernel validation in practice. Commun. ACM, 19(5):243-250, May

1976.

[12] Marvin Schaefer, Barry Gold, Richard Linde, and John Scheid. Program confinement in KVM/370.

In Proceedings of the 1977 annual conference, ACM ’77, New York, NY, USA, 1977. ACM, pp.404-

410.

[13] Stanley R. Ames and Jonathan K. Millen. Interface verification for a security kernel. Technical report,

Infotech International, Ltd., Maidenhead, Berkshire, UK, 1978.

[14] C. Kline. Data security: Security, protection, confinement, covert channels. PhD thesis, UCLA, 1980.

[15] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Sys-

tems. In Proceedings of the 16th Annual International Cryptology Conference on Advances in Cryp-

tology, CRYPTO ’96, London, UK, UK, 1996. Springer-Verlag, pp.104-113.

[16] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In CRYPTO, 1999,

pp.388-397.

[17] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to differential power

analysis. J. Cryptographic Engineering, 1(1):5-27, 2011.

[18] Hossein Bidgoli. Handbook of Information Security, Threats, Vulnerabilities, Prevention, Detection,

and Management, Vol.3. John Wiley & Sons, 2006.

[19] John McLean. Security models and information flow. In Research in Security and Privacy, 1990.

Proceedings., 1990 IEEE Computer Society Symposium on. IEEE, 1990, pp.180-187.

[20] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems, Vol.2. Prentice Hall, 2002.

[21] Randy Chow and Theodore Johnson. Distributed Operating Systems and Algorithms. Addison Wes-

ley, 1997.

[22] Butler W. Lampson. Protection. In Princeton University, 1971, pp.437-443.

[23] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical Foundations. Technical Re-

port MTR-2547, Vol.1, MITRE Corp., Bedford, MA, 1973.

[24] Andrew C. Myers and Barbara Liskov. A Decentralized Model for Information Flow Control. In Proc.

17th ACM Symp. on Operating System Principles (SOSP, 1997, pp.129-142.

[25] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazi`eres. Making information

flow explicit in HiStar. In Proceedings of the 7th USENIX Symposium on Operating Systems Design

The Confinement Problem: 40 Years Later

202

and Implementation- Vol.7, OSDI ’06, Berkeley, CA, USA, 2006. USENIX Association, pp.19-19.

[26] National Security Agency. Security Enhanced Linux, May 2013.

[27] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie Kohler,

David Mazieres, Frans Kaashoek, and Robert Morris. Labels and event processes in the Asbestos op-

erating system. ACM SIGOPS Operating Systems Review, 39(5):17-30, 2005.

[28] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A virtual machine-

based platform for trusted computing. In ACM SIGOPS Operating Systems Review, Vol.37. ACM,

2003, pp.193-206.

[29] Andrew Martin et al. The ten page introduction to trusted computing, 2008.

[30] Joanna Rutkowska and Rafal Wojtczuk. Qubes OS architecture. Invisible Things Lab, Tech. Rep,

2010.

[31] Kevin Borders, Eric Vander Weele, Billy Lau, and Atul Prakash. Protect ing Confidential Data on

Personal Computers with Storage Capsules. In USENIX Security Symposium, 2009, pp.367-382.

[32] Billy Lau, Atul Prakash, and Venkatanathan Annamalai. Accessing Trusted Web Sites from Low-

Integrity Systems without End-Host Snooping. In SocialCom/PASSAT, 2011, pp.1012-1019.

[33] Petros Maniatis, Devdatta Akhawe, Kevin Fall, Elaine Shi, Stephen McCamant, and Dawn Song. Do

you know where your data are?: secure data capsules for deployable data protection. In Proceedings

of the 13th USENIX conference on Hot topics in operating systems, HotOS’13, Berkeley, CA, USA,

2011. USENIX Association, pp.22-22.

[34] Liang Cai and Hao Chen. TouchLogger: inferring keystrokes on touch screen from smartphone mo-

tion. In Proceedings of the 6th USENIX conference on Hot topics in security, HotSec’11, Berkeley,

CA, USA, 2011. USENIX Association, pp.9-9.

[35] Schwartz, Edward J. and Avgerinos, Thanassis and Brumley, David. All you ever wanted to know

about Dynamic Taint Analysis and Forward Symbolic Execution. In proceedings of the 2010 IEEE

Symposium on Security and Privacy, S&P ’10, Washington DC, USA, 2010, pp.317-331.

[36] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and

Anmol N. Sheth. TaintDroid: an information-flow tracking system for realtime privacy monitoring on

smartphones. In Proceedings of the 9th USENIX conference on Operating systems design and im-

plementation, OSDI’10, Berkeley, CA, USA, 2010. USENIX Association, pp.1-6.

[37] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos. Paranoid Android:

versatile protection for smartphones. In Proceedings of the 26th Annual Computer Security Applica-

tions Conference, ACSAC ’10, 2010, pp.347-356.

[38] U ́lfar Erlingsson. The inlined reference monitor approach to security policy enforcement. PhD thesis,

Ithaca, NY, USA, 2004. AAI3114521.

[39] Rubin Xu, Hassen Sa¨ıdi, and Ross Anderson. Aurasium: practical policy enforcement for Android

applications. In Proceedings of the 21st USENIX conference on Security symposium, Security’12,

Berkeley, CA, USA, 2012. USENIX Association, pp.27-27.

[40] Giovanni Russello, Mauro Conti, Bruno Crispo, and Earlence Fernandes. MOSES: supporting opera-

tion modes on smartphones. In Proceedings of the 17th ACM symposium on Access Control Models

and Technologies, SACMAT ’12, New York, NY, USA, 2012. ACM, pp.3-12.

[41] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason Nieh. Cells: a virtual

mobile smartphone architecture. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles, SOSP ’11, New York, NY, USA, 2011. ACM, pp.173-187.

[42] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. CRePE: context-related policy enforcement

for android. In Proceedings of the 13th international conference on Information security, ISC’10, Ber-

lin, Heidelberg, 2011. Springer-Verlag, pp.331-345.

[43] LuisM. Vaquero, Luis Rodero-Merino, and Daniel Morn. Locking the sky: a survey on IaaS cloud

security. Computing, 91(1):93-118, 2011.

[44] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In Proceedings of the 16th ACM con-

ference on Computer and communications security, CCS ’09, New York, NY, USA, 2009. ACM,

pp.199-212.

Alex Crowell, Beng Heng Ng, Earlence Fernandes and Atul Prakash

203

[45] Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. Determinating timing channels in

compute clouds. In Proceedings of the 2010 ACM workshop on Cloud computing security workshop,

CCSW ’10, New York, NY, USA, 2010. ACM, pp.103-108.

[46] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber, and Edgar Weippl. Dark

clouds on the horizon: using cloud storage as attack vector and online slack space. In Proceedings of

the 20th USENIX conference on Security, SEC’11, Berkeley, CA, USA, 2011. USENIX Association,

pp.5-5.

[47] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-space: high-speed covert channel

attacks in the cloud. In Proceedings of the 21st USENIX conference on Security symposium, Securi-

ty’12, Berkeley, CA, USA, 2012. USENIX Association, pp.9-9.

[48] Ronald Perez, Reiner Sailer, and Leendert van Doorn. vTPM: virtualizing the trusted platform mod-

ule. In Proc. 15th Conf. on USENIX Security Symposium, 2006, pp.305-320.

[49] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. NoHype: virtualized cloud infrastruc-

ture without the virtualization. In Proceedings of the 37th annual international symposium on Com-

puter architecture, ISCA’10, New York, NY, USA, 2010. ACM, pp.350-361.

[50] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. CloudVisor: retrofitting protection of virtual

machines in multi-tenant cloud with nested virtualization. In Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, SOSP ’11, New York, NY, USA, 2011. ACM, pp.203-

216.

Alex Crowell

Alexander Crowell is a doctoral candidate in Computer Science at the University

of Michigan, Ann Arbor, focusing on research in computer security and privacy

under advisor Atul Prakash. He previously received a Bachelor of Science in

Computer Science from Rutgers, The State University of New Jersey, and a

Master of Science in Computer Science from the University of Michigan, Ann

Arbor.

Beng Heng Ng

Beng Heng received his Ph.D. from the University of Michigan, and was advised

by Prof. Atul Prakash. His thesis focused on techniques towards achieving the

least privilege principles on various computer systems. He is also interested in

security including, but not limited to, malware polymorphism, propagation, attack

vectors and covert channels. Prior to pursuing his Ph.D., he worked as a security

software researcher. His job scope included penetration testing, security soft-

ware analysis and malware analysis

The Confinement Problem: 40 Years Later

204

Earlence Fernandes

Earlence Fernandes graduated with a Bachelor in Computer Engineering from

the University of Pune in 2009. He worked as a Scientific Programmer in the

Systems Security group at Vrije Universiteit Amsterdam until 2012. Currently, he

is a PhD student at the University of Michigan, Ann Arbor, USA; working in the

areas of Smartphone Security and runtime optimizations for Information Flow

Control.

Atul Prakash

Atul Prakash is a Professor in Computer Science and Engineering at the Univer-

sity of Michigan, Ann Arbor with research interests in computer security and pri-

vacy. He received a Bachelor of Technology in Electrical Engineering from IIT,

Delhi, India and a Ph.D. in Computer Science from the University of California,

Berkeley. His research on online web security was widely quoted, including Busi-

ness Week, Barron’s, and BBC Digital Planet. He has also examined the problem

of privacy and security risks in emerging pervasive systems, such as online social

networks. In a NIST-funded project, he explored solutions to collecting data for monitoring the health of

cyber-physical systems, such as bridges. Dr. Prakash received an award for the best undergraduate

project at IIT Delhi and the research excellence award at the University of Michigan. Among his earlier

research work, he was one of the designers of the Upper Atmospheric Research Collaboratory (UARC)

project, among the first scientific collaboratory systems, which was recognized by the Smithsonian-

Computerworld for its contributions to science. Among educational activities, he helped create the inter-

disciplinary undergraduate program in Informatics at the Univ. of Michigan. Dr. Prakash is a member of

IEEE and ACM.

