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Abstract 
 

Jitterbug is a passive network covert timing channel supplying reliable stealthy transmission. 
It is also the basic manner of some improved covert timing channels designed for higher 
undetectability. The existing entropy-based detection scheme based on training sample 
binning may suffer from model mismatching, which results in detection performance 
deterioration. In this paper, a new detection method based on the feature of Jitterbug covert 
channel traffic is proposed. A fixed binning strategy without training samples is used to obtain 
bins distribution feature. Coefficient of variation (CV) is calculated for several sets of selected 
bins and the weighted mean is used to calculate the final CV value to distinguish Jitterbug 
from normal traffic. Furthermore, the timing window parameter of Jitterbug is estimated based 
on the detected traffic. Experimental results show that the proposed detection method can 
achieve high detection performance even with interference of network jitter, and the parameter 
estimation method can provide accurate values after accumulating plenty of detected samples. 
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1. Introduction 

In espionage activities against computer systems, the information leakage can commonly be 
prevented by some preset security equipments, such as network firewalls, IDS, or other traffic 
checking devices, which can identify the unauthorized or abnormal network traffic. If the 
information is hided into the normal traffic, these equipments will no longer work. 
Consequently, we can conceal the very existence of the data transmission, and this kind of 
transmission art is called network covert channel which is a stealthy communication technique 
utilizing redundancies of network protocols or packet-sequence characteristics to transfer 
secret message. It also can be named network steganography, which refers to the field of 
image steganography [1]. Similar to the concept of covert channel in multi-level security 
(MLS) systems, network covert channel can also be divided into storage and timing channels 
[2]. Network covert storage channel is constructed by modifying some unused or insensitive 
bits of protocol header in network packets. Network covert timing channel is constructed by 
modulating secret message into packet rates/inter-packet delays (IPDs). Besides the time 
sequence, other covert channels based on characteristics of packet-sequence are usually 
considered as the timing case. Network covert timing channel is also the current focus issue on 
network steganography research. 

Padlipsky et al. [3] firstly described the principle of the on/off timing channel in which the 
sender either transmits or stays silent in each time interval to represent 0 or 1. Girling [4] also 
proposed a covert timing channel which can transmit secret message by particular delays 
between successive transmissions imposed by a sender. On this basis, Berk et al. [5] illustrated 
the delay-based channel by two delays (binary channel) and multiple delays (multi-symbol 
channel), and then investigated how to find the optimal symbol distribution to maximize the 
channel capacity, the possible detection schemes were also discussed for these channels. The 
delay-based timing channel does not require a synchronized clock, while an on/off timing 
channel needs a synchronization mechanism to ensure decoding accuracy. Thus, Cabuk et al. 
[6-7] implemented the on/off timing channel which introduces start of frame (SOF) and silent 
intervals to synchronize between sender and receiver. The modulation of inter-packet delays 
may change the overt communication pattern and make itself more exposed. To solve this 
problem, Gianvecchio et al. [8] proposed a model-based covert timing channel called MBCTC. 
In their scheme, the channel mimics the observed behavior of legitimate network traffic to 
evade detection. Liu et al. [9] proposed a simple binary covert timing channel based on 
Gianvecchio’s framework, and this method is more practical in encoding/decoding and has a 
lower bit error rate. Although these covert channels can resist detection methods based on 
statistical properties, the algorithms are usually complicated with low data rate and are not 
easy to be deployed in a real network. 

It is obvious that the detection against the covert timing channel is also an important 
problem. Researchers have made lots of endeavors. Cabuk et al. [6] proposed a detection 
method against on/off covert timing channel, in which two measures, regularity (i.e. patterns 
in the variance) and ε -similarity (i.e. similarity between adjacent inter-arrival times), were 
defined to judge whether the traffic was a covert one. Peng et al. [10] showed that the 
Kolmogorov-Smirnov (KS) test is able to distinguish watermarked inter-packet delays from 
normal inter-packet ones, and the KS test is utilized to detect abnormal shapes of IPDs created 
by covert timing channels [11]. Gianvecchio et al. [12] proposed an entropy-based detection 
approach which uses of entropy (EN) and corrected conditional entropy (CCE) to describe 
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abnormal shape or abnormal regularity separately. The approach is able to detect most of the 
existing covert timing channels but needs legitimate traffic samples to determine the bin 
ranges. Due to the various manners of network traffic, it is hard to choose proper reference 
samples to adapt to all of the cases, and the threshold setting is also a great challenge. Thus, the 
detection performance of entropy-based test may be reduced in practice. 
This paper is focused on a typical delay-based covert timing channel named Jitterbug [13] 
which is originally designed as a keyboard device to leak typed messages. Jitterbug is a 
passive covert timing channel that utilizes the existing network traffic as over channels and 
transmits secret message by modifying their IPDs. The interactive communication 
applications such as Skype may generate continued traffic that can be applied as an overt 
channel for Jitterbug. Due to the widespread use of interactive communication applications, 
Jitterbug may become a very practical covert channel to leak information over Internet. Some 
improved covert timing channel methods, such as Liquid [14] and Mimic [15], also have the 
similar basic encoding/decoding scheme. Thus, the researches on designing detection scheme 
against this basic manner covert channel (i.e. Jitterbug) are imperative and worth. For 
implementing the detection of Jitterbug, we count the bins distribution of inter-packet delays 
in a fixed binning strategy and then calculate the coefficient of variation (CV) of partial 
successive bins that belong to a significant region. After that, these CV values are utilized to 
distinguish between normal traffic and Jitterbug traffic. We also make an effort to estimate the 
main decoding parameter of Jitterbug, which is the basis of extracting secret message from 
detected traffic. To the best of our knowledge, it is the first attempt to estimate the network 
covert timing channel parameters. 

The remainder of this paper is organized as follows. Section 2 introduces the principle of 
Jitterbug and corresponding analysis. Section 3 gives our detection scheme and parameter 
estimation method. Section 4 presents the experimental results. Section 5 concludes the whole 
paper. 

2. Background and related work 

2.1 Revisiting Jitterbug  
Shah et al. [13] designed Jitterbug covert channel as a hardware interception device installed 
between the computer and its keyboard. The covert timing channel performed by Jitterbug is a 
passive one utlizing the existing communication traffic, so no additional traffic needs to be 
generated for transmitting the secret message. The communication scenario of Jitterbug is 
illustrated by Fig. 1. In the scenario, the Jitterbug device embeds information into the 
keystroke timing in the form of small supplementary jitters. If each keystroke is sent within a 
single packet, the timing information will remain in the inter-packet delays. Therefore, the 
overt channel of Jitterbug must be an interactive network application (e.g. Telnet, SSH) in 
which each keystroke corresponds to a packet. The receiver monitors the packet flows of these 
applications and decodes the secret message from the manipulated IPDs. Although 
performance of keyboard Jitterbug may be affected by keyboard buffering, OS scheduling, 
and so on, its potential advantage is only to require a compromised input device rather than a 
compromised host.  
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Fig. 1. Communication scenario of Jitterbug 

 
The mechanism of keyboard Jitterbug can also be extended to a useful covert channel 

method when a compromised host is obtained. In this scenario, a special driver for Network 
Interface Card (NIC) is considered to add timing information instead of hardware device. The 
secret message can be encoded by adding extra packet delays just in the software manner. In 
this case, the choice of overt channel can be extended to the applications containing continued 
traffic session (e.g. VoIP).  

For the Jitterbug covert channel, the inter-packet delays are manipulated to satisfy certain 
properties depending on the secret message to be sent. In a binary encoding case, letting bi 
denote a bit sequence and w (in milliseconds) denote the Jitterbug timing window which is 
used to manipulate the delays to represent encoding symbols, IPDs sequence denoted as 

iδ should be manipulated to satisfy Eq. (1).  
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Where i i i it sδ δ ′= + ∆ +  with iδ ′  being original inter-packet delay between the packet pi+1 and 
pi, and it∆  being the added delay to satisfy the modulo operation. If the modulo operation is 
used only on iδ , the manipulated IPDs will be changed to the value around multiples of w/2. 
To prevent the IPDs clustering around multiples of w/2, a pseudo-random sequence si with 
integer millisecond values from 0 to w-1 is additionally added, and this sequence is assumed 
only to be known by the sender and receiver. 

After the transmission on the Internet link, the packet pi+1 and pi arrive at the receiver end. 
The modulated IPD iδ  is changed to îδ  due to the link delay jitters. The receiver decodes the 
message bit îb  with the shared si according to Eq. (2). 
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2.2 Entropy-based detection method and its limitation 
Except the EN test [12], most of the current detection algorithms mentioned in Section 1 fail to 
distinguish Jitterbug from normal traffic. The first-order entropy is estimated in EN test to 
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measure the shape of the investigated traffic. Due to finite number of samples, the empirical 
probability density function based on the method of histogram is employed to replace 
probability density function. The entropy-based detection uses equiprobable binning strategy 
to decide how the IPDs are partitioned. The binning strategy needs to work on normal sample 
traffic to determine the range of each bin. Thus, the bins may have different width while the 
sample IPDs distribute equiprobably in each bin. The total number of bins is another important 
parameter of binning strategy. There is a trade-off in choosing the number of bins, a larger 
number of bins retains more information about the distribution of the traffic while a small 
number of bins is able to measure the regularity of the traffic. Consequently, the EN test and 
CCE test adopt fine-grain binning and coarse-grain binning separately to obtain both 
advantages. Actually, the EN test is designed to measure how closely the tested IPDs fit the 
normal reference traffic and the number of its bins is as many as 65536 columns. Although 
Jitterbug only adds tiny delays to original IPDs, the changes of distribution in the bins are still 
perceived due to the fine-grain binning strategy. Commonly, EN test scores of normal traffic 
approach the upper-bound value of the first-order entropy and the lower EN test scores imply 
the possible existence of a Jitterbug covert channel. 

However, there are some restrictions for deploying EN test in a real network environment. 
As mentioned above, the detection performance significantly depends on the binning strategy 
determined by training IPD samples, which is verified by our experiment. In the experiment, 
two SSH traffic sets are extracted from the traffic archive of WIDE Project [16]. These two 
SSH traffic sets belong to two absolutely different links, so the corresponding two IPDs 
sequences are unrelated to each other. The first IPDs set is divided into two subsets: Training 
set and Normal-1 set. The second one is named Normal-2 set. Two Jitterbug IPDs sequences, 
named Jitterbug-1 and Jitterbug-2 set, are generated according to the algorithm described in 
subsection 2.1 using Normal-1 and Normal-2 set, respectively. The lengths of IPDs sequences 
in these sets are as long as 100,000. The binning strategy is determined based on the Training 
set using the method given in Ref. [12]. The EN tests are performed on Normal-1, Jitterbug-1, 
Normal-2, and Jitterbug-2 with the recommended detection windows size of 2,000 and the 
corresponding EN scores are shown in Fig. 2.  
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Fig. 2. Model mismatching case of EN test 

 
Fig. 2 shows that Jitterbug-1 can be distinguished from Normal-1, while Normal-2 and 

Jitterbug-2 are both considered to be abnormal due to the low EN scores. It is because that 
Normal-1 set is extracted from the same source of Training set and the training samples have 
good indication to obtain proper bins and lead to ideal detection results. However, Normal-2 
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set extracted from another source has a notable deviation from training samples due to the 
different manners of SSH traffic. Hence, training samples become invalid for guiding binning 
and the EN scores of Normal-2 and Jitterbug-2 are hard to be separated by a constant threshold. 
We called this state a model (i.e. binning strategy based on training samples) mismatching 
case of EN test.  

To solve the mismatching problem, a possible solution is to build enough models for 
adopting the diversity of the network application traffic. Technically, we can use an empirical 
estimation to get a normal distribution of IPDs from observed data, and the distribution 
regarded as a model of EN test can only be valid for the same type of application traffic under 
the same network condition. In other words, the inter-packet delays are related to the network 
application, the network connection environment, and the processing ability of the computer, 
thus the solution is infeasible in a real Internet detection scenario. The other solution is to 
study the detection methods based on the features of the covert channels themselves. With the 
limitation just valid to a specific covert channel method, these kinds of detection methods are 
more reliable. It is also the main motivation of this paper. 

3. Proposed method 

3.1 Binning strategy 
According to Eq. (1), Jitterbug firstly adds tiny delays it∆  to the original inter-packet delays 

iδ ′ , which cause that IPDs cluster around mw/2 (m=1, 2, 3,…). To smooth the obvious 
clustering abnormality, the pseudo-random sequence si is additionally added to scatter each 
clustered IPDs over all integer millisecond values in the range [mw/2, (m+2)w/2). To discover 
and investigate the fine change of the IPDs histogram, the following binning strategy is 
adopted in this paper.  
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Where B is the width of each bin and is set to 0.001s, maxd and mind  denote the maximum and 
minimum values of observed successive IPDs, respectively.  

To observe the effect of binning strategy on Jitterbug, an experiment was performed. 
Skype-VoIP stream between China Nanjing and Beijing was captured and a total of 10,000 
IPDs are recorded. Based on the binning strategy defined by Eq. (3), the statistical result of 
normal IPDs amount for each bin is shown in Fig. 3. Processing these IPDs according to the 
Jitterbug method with the parameter w=20ms, the statistical result of Jitterbug’s IPDs amount 
for each bin is shown in Fig. 4. The X-axis of the figures represents the label of each bin and 
the bin ranges are calculated by Eq. (3). It is clear that Jitterbug will cause approximately equal 
bin values of successive bins, which we call feature regions. However, this characteristic does 
not occur in the histogram of normal traffic. The characteristic is also unsurprising according 
to the principle of Jitterbug. It is expected that the measure of this characteristic will help 
detect and estimate the Jitterbug covert channel.  
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It also can be found that B=0.001s is a minimum value for choosing. If B is less than 0.001s, 
such as 0.0005s, we may not observe successive bins with approximately equal bin values 
(named abnormal feature). The bins whose range does not contain integer millisecond value 
will get smaller bin values (i.e. fewer IPDs fall into these bins). It means that the binning 
strategy on this bin width lost the ability to represent the abnormal feature which is caused by 
Jitterbug’s parameter si. On the other hand, if B is greater than 0.001s, such as 0.002s, we can 
still catch the abnormal feature (other values of B in multiples of 0.001s can also make it), but 
the length of these successive bins will be cut in half. If the length is too small, the detection 
test will cause remarkable false alarm because the normal traffic may form the similar feature 
within small length of successive bins. Thus, the value of B>0.001s is also not feasible for the 
detection. 

Compared with EN test, the application of fixed binning strategy removes the dependence 
of training samples and avoids the model mismatching problem. Moreover, the EN test also 
can-not work well under this binning strategy due to the lack of reference entropy value (the 
original reference value is calculated by training samples) to distinguish Jitterbug from normal 
traffic. 
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     Fig. 3. Histogram of normal traffic                      Fig. 4. Histogram of Jitterbug traffic 
 

3.2 Detection based on coefficient of variation 
Coefficient of variation is a standardized measure of dispersion of data points in a data 
sequence around the mean. It is defined as the ratio of the standard deviation to the mean [17]. 
CV is a dimensionless number made for comparing data sets with different units or widely 
different means. In this paper, CV is used to measure partial successive bins of the feature 
regions which we call significant regions. According to the characteristic mentioned above, 
the CV values of the significant regions in the histogram of Jitterbug traffic, which contains 
approximately equal bin values, are expected to be smaller than that of most regions in the 
histogram of normal traffic. 

The selection of significant regions is the most critical step in our detection scheme. It is 
especially hard for this step because of the finite samples, it is worth nothing that 10,000 
samples counted in Fig. 3 and Fig. 4 are only for distinct illustration, the actual detection 
window needs to be much smaller for a quick responding. The significant regions are selected 
by two principles, one is that the region must contain enough proportion of the samples, and 
the other is that the region must start at a proper position in order to obtain the remarkable 
feature of samples. The width of region, which is denoted as S (i.e. the total number of bins in 
the region) must less than / 2w    (in ms), is set to 7, because values of w less than 15ms may 
cause significant Bit Error Rate according to Table 1 of Ref. [13]. A sliding window with the 
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same width is used to select significant regions and the detection process can be described as 
follows. 

First, in a detection window W, count the histogram of IPDs under the binning strategy 
mentioned above, and then obtain a sequence of IPDs amount in each bin.  

 
1 2( , ,..., )nt t t t=                                                                      (4) 

 
Second, slide the CV computation window (i.e. the width of significant region, S) on t, and 

obtain a new sequence t̂  based on Eq. (5). 
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The position set l of peak points of t̂  is written as Eq. (6). The position set l̂  of remarkable 

points of t̂  is written as Eq. (7). Then the set l∗  is obtained using Eq. (8) which is taken as the 
start positions of each significant region. 

 
{ }1 2 1 1

ˆ ˆ ˆ ˆ, ,..., , and
i i i ix l l l ll l l l t t t t+ −= > >                                    (6) 

{ } ˆ1 2
ˆ ˆ ˆ ˆ ˆ, ,..., , 0.1

i
y l

l l l l t W= >                                                    (7) 

{ }1 2
ˆ , ,..., zl l l l l l∗ ∗ ∗ ∗= ∩ =                                                          (8) 

 
Third, the coefficient of variation of each significant region is calculated by Eq. (9). 
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Fourth, the weighted mean of all computed CVs is obtained by Eq. (10) and the weighted 

coefficient related to IPDs amount of significant region is written as Eq. (11). 
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Finally, a threshold T is utilized to distinguish Jitterbug from normal traffic. If cv T< , the 

traffic within W is considered to be a Jitterbug covert communication.  
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3.3 Parameter estimation 
Detecting a covert channel is not the final step of the countermeasures, recognizing the type of 
covert channel, estimating decoding parameters and extracting secret message are also 
important issues for data leakage forensics. Since our detection scheme is based on the feature 
of Jitterbug itself, the detected traffic is surely recognized as Jitterbug one. So in this 
subsection, we pay our attention only on the parameter estimation.  

For Jitterbug, there are two parameters w and si that need to be estimated. The 
pseudo-random sequence si is commonly generated by a shared key, so its estimation falls into 
the category of cryptography and is not considered in this paper. Based on the observation of 
Fig. 4 and the principle of Jitterbug, w is related to the width of the successive bins with 
approximately equal bin values, which we call bin cluster. So if the edges of these clusters can 
be accurately located, the estimated value of w will be obtained. Additionally, since the 
parameter estimation works in an offline situation, we can use more detected IPD samples to 
carry on the estimation. The estimation process can be described as follows. 

First, after accumulating several detected windows of Jitterbug traffic, the histogram of 
IPDs is counted using the above binning strategy, and the IPDs amount in each bin is denoted 
as Eq. (12) with a total of n bins. 

1 2( , ,..., )nt t t t′ ′ ′ ′=                                                                      (12) 
 

Second, to find the edges of each cluster, the forward difference sequence is calculated as 
Eq. (13). 
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Most edges cause peak points of t∗ , and a position sequence of these peaks is shown as Eq. 

(14). Some small peak points are excluded by satisfying 0.3max{ }
i iP Pt t∗ ∗< , and a new position 

sequence is shown as Eq. (15). 
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Third, according to the principle of Jitterbug, the distance of adjacent peak points is 

considered to be the approximation of w/2 (in ms), and a distance sequence is obtained in Eq. 
(16).  
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ˆ ˆ( , ,..., ),y i i iD D D D D P P− += = −                                       (16) 

 
When two adjacent clusters have a close amount of IPD samples, the edge between them 

might not be found and a larger distance value will occur. So the unexpected abnormal values 
should be excluded. For this, D is firstly sorted in order from the lowest to the highest and the 
sorted one is denoted as Eq. (17). 
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Finally, the estimation value w∗ (in ms) is calculated by Eq. (18) with a partial value of the 

sorted distance sequence, which is used to delete the larger or smaller unreliable values. 
Consequently, the estimated value is close to the real parameter with high probability. 
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4. Experimental Results 

4.1 Datasets and threshold determination 
To evaluate the effectiveness of our detection scheme, several different types of normal traffic 
are prepared as overt channels. Since VoIP traffic is considered to be a suitable overt channel 
for network covert communication [18-19], Skype and QQ (the most widely used instant 
messaging software in China) are chosen to generate overt VoIP traffic. We started voice 
communications from our laboratory (Nanjing) to outside locations (Beijing, Shanghai, 
Chengdu) by two kinds of software separately and captured these traffics in our laboratory’s 
gateway to make up two sets named Skype set and QQ set. The SSH set was obtained from the 
traffic archive of WIDE Project [16], which the traffic was captured from the samplepoint-F of 
WIDE backbone. Each of these sets contains over 600,000 packets. 

Jitterbug traffic was generated based on the three normal traffic sets. We replayed the 
packets of each set and added delays according to the encoding scheme of Jitterbug. It is 
considered to be a software implementation of Jitterbug that manipulates IPDs directly. We 
also captured these traffics in the gateway and obtained three sets named Jitterbug-SSH, 
Jitterbug-Skype, and Jitterbug-QQ. Moreover, changing the encoding parameter w will 
generate more Jitterbug traffic for testing. 
According to the discussion, the threshold T is a critical factor for the detection performance. 
To find a proper value of T, the CV values of normal traffic and Jitterbug traffic are calculated 
separately. The normal traffic is combined by Skype, QQ, and SSH sets. The packet number of 
the combined set is as many as 500,000, and the tested Jitterbug traffic is combined by the 
corresponding Jitterbug-Skype, Jitterbug-QQ, and Jitterbug-SSH. The packet number of 
Jitterbug traffic is the same as that of normal traffic. Before the threshold determination test, 
we performed an initial detection windows size effect test. In the test, the detection window 
size was set to 1,000, 2,000, and 3,000, respectively. Fig. 5 shows that a larger detection 
window makes detecting the Jitterbug traffic easier. 
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Fig. 5. CV values of normal traffic and Jitterbug traffic in a fixed w with different detection windows 
 

In the threshold determination test, the detection window was set to 1,000, and the Jitterbug 
encoding windows size w was set to 15ms, 20ms, 25ms, and 30ms. According to the results of 
Fig.5, the chosen testing parameters are conserved enough to guarantee that the obtained 
threshold is reliable for practical conditions. The distribution of CV values is shown in Fig. 6. 
The CV values of two types of traffic have few overlaps and the CV values of Jitterbug traffic 
maintain in a stable range which are also less affected by the change of different w values. The 
threshold T to distinguish these two kinds of traffic was chosen as 0.25, which results in the 
average detection error rate to not be larger than 2%. 
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Fig. 6. CV values of normal traffic and Jitterbug traffic with different w in a fixed detection window 

 

4.2 Results and analysis 
4.2.1 Detection Performance 
The detection performance under different detection windows, different encoding parameters 
and different overt channels were evaluated. The detection window W was chosen as 1,000, 
1,500, 2,000, and 2,500 while timing window w of Jitterbug was set to 15ms, 20ms, 25ms, and 
30ms, respectively. With the fixed threshold 0.25, the detection rate (denoted as TP) and false 
alarm rate (denoted as FP) are obtained by sliding the non-overlapped detection window on 
each test set. The detection results are summarized in Table 1. 
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Table 1. Detection results on different states 

 

W w 
(in ms) 

Jitterbug-Skype Skype Jitterbug-QQ QQ Jitterbug-SSH SSH 
TP FP TP FP TP FP 

1,000 

15 98.33% 

1.5% 

98.83% 

1.17% 

98% 

1.83% 20 98.83% 98.17% 97.17% 
25 99.17% 98% 97.83% 
30 98.33% 98% 98.17% 

1,500 

15 98.75% 

1% 

98.5% 

1.25% 

98.25% 

1.75% 20 99.25% 99% 98.25% 
25 99% 100% 99% 
30 99% 99% 98% 

2,000 

15 99.33% 

0.33% 

99.67% 

0.33% 

98% 

0.67% 20 100% 99.33% 98.67% 
25 98.67% 99.33% 100% 
30 100% 100% 99.33% 

2,500 

15 100% 

0% 

100% 

0% 

100% 

0% 20 100% 100% 100% 
25 100% 100% 100% 
30 100% 100% 100% 

 
As listed in Table 1, our scheme is reliable to detect Jitterbug traffic in all cases. It is 

obvious that the larger detection window size is helpful to make more accuracy detection. 
When the detection window is as high as 2,500, the detection error rate decreases to zero. 
However, the detection windows in the practical scenario are expected to be as small as 
possible to economize the memory and computation resources and to provide flexibility and 
rapidity. So with the comprehensive consideration of these factors, the recommended 
detection window is chosen as 1,500. Furthermore, the timing window w utilized in the table 
has little effect on detection results. Although a larger value of w needs more IPD samples for 
accurate detection (i.e. a larger detection window), it is not often used in Jitterbug covert 
channel because of the lower data rate. Thus, the chosen detection parameters are still reliable 
and flexible in a practical detection scenario. 
 
4.2.2 Analysis of bin width setting 
For further investigation, the influence on detection under the change of bin width is analyzed 
by carrying out several experiments. The normal traffic was combined from Skype, QQ, and 
SSH sets, while the Jitterbug traffic was combined from the corresponding Jitterbug sets with 
w=20ms. For fixed detection parameters W=1500, T=0.25, and S=7(the width of significant 
region is also the computing window of CV values), the detection performance of different bin 
widths under the same computing window is shown in Fig. 7. The average error rate (denoted 
as AP) is defined as AP=(1-TP+FP)/2, the lower value of  AP implies the better detection 
performance.  

Fig. 7 shows that the minimum value of AP can be obtained when B=0.001s. When 
B<0.001s, the detection rate drops to the very low value with the decrease of B. These bin 
widths may not catch the abnormal feature (successive bins with approximately equal bin 
values) of Jitterbug because some of bins whose range does not contain integer millisecond 
values will get smaller bin values (i.e. fewer IPDs fall into these bins). In a computing window, 
the larger appearance probability of this kind of bins leads to the greater CV value and the 
lower detection rate. When B>0.001s, taking the values in multiples of 0.001s, the detection 
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rate is also reduced with the increase of B. Although these bin widths can still catch the 
abnormal feature of Jitterbug, the width of the abnormal feature region has been reduced. If the 
width of the abnormal feature region is less than computing window S, the CV values of each 
computing window will raise and the detection rate will reduce. As a result, the fixed value of 
S in the detection test is not suitable for B>0.001s and S need to be adapted to the change of B. 
In fact, the value of S need to be satisfied with / 2S B w⋅ ≤  . Thus, another group of 
experiments are performed with different values of S, and then the detection performance of 
different bin widths under the adaptive computing window is shown in Fig. 8. 
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Fig. 7. Detection performance of different bin widths under the same computing window 
 
 

Fig. 8 shows that the minimum value of AP is also obtained when B=0.001s. When 
B<0.001s, these bin widths still cannot catch the abnormal feature, the detection rate 
deteriorates faster due to the increased value of S comparing with Fig. 7. That means the 
appearance probability of the bins with smaller bin values in a computing window increases 
and leads to lower detection rate. When B>0.001s, taking the values in multiples of 0.001s, the 
detection rate maintains greater than 0.95 under each adaptive computing window. However, 
with the decrease of S, the false alarm rate raises rapidly. This is because the value of S is 
relatively small and the normal traffic may form the similar abnormal feature within small 
computing window. Thus, even if these bin widths get sound detection rate under adaptive 
computing window, the average error rate is still unacceptable for the detection. From the two 
figures, it can be found that 0.001s is a suitable value of bin width for the proposed detection 
scheme. 
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Fig. 8. Detection performance of different bin widths under the adaptive computing window 
 

 
4.2.3 Robustness against network jitter 
Commonly, the network covert channel detector is used to prevent the data leakage from 
inside to outside. Hence the detector is always deployed at the network boundary which is 
close to the sender. When the detector is close enough to the sender (within several routers), 
the captured IPDs will not suffer from the influence of network jitter. When the detector has to 
inspect the potential covert channel communication of users in a district, the detector has to be 
deployed in a backbone network. Therefore, the captured IPDs are unavoidably affected by 
network jitter caused by the forwarding equipments (e.g. routers). So, the detection 
performance resisting network jitter should be tested in the latter scenario. To simulate the 
network jitter, we add a network link emulator between Jitterbug sender and the detector. The 
network emulator was implemented on Linux host with double NICs. The Netem [20] was 
used to simulate packet losses, delays, delay jitters, and so on. For W=1500, w=15ms, 20ms, 
25ms, and T=0.25, the detection rate and Jitterbug bit error rate (BER) are investigated under 
different intensity of jitters. Since there is no acknowledged model for network jitter, the 
normal distribution with zero mean and standard deviation σ  is used to model the network 
jitter. And 3σ  (in ms) is used to measure the intensity of jitters. 

As shown in Fig. 9, with the increased the network jitter intensity, the BER of Jitterbug 
becomes larger and larger, which reflects that Jitterbug is not robust enough to resist network 
jitter. For fixed network jitter intensity, the smaller Jitterbug timing window is more sensitive 
than the larger one and results in a greater BER value. Fortunately, the detector’s performance 
is always acceptable. Fig. 9 shows that the detection rate maintains high performance under 
minor network jitter, and it is still over 70% despite the BER is as high as 50%. Although the 
network jitter may change the distribution of IPDs, the proposed feature based on partial 
successive bins can still represent Jitterbug’s characteristic. Thus, the detection method is 
robust to resist network jitter. 
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Fig. 9. Influence of network jitter 

 
4.2.4 Parameter Estimation  
In the parameter estimation experiments, the Jitterbug timing window w was set to 15ms, 
20ms, 25ms, and 30ms. We chose 10,000, 15,000, and 20,000 as the estimation window, 
which was denoted as We. It means there are 12 estimation experimental conditions in total. 
We obtained estimated values of w by running estimation algorithm 50 times for each 
condition and the mean and standard deviation were used to evaluate the estimation 
performance. The results are listed in Table 2. From Table 2, it can be found that the accuracy 
is continually improved with the increase of estimation window. When We=20,000, the 
estimated value is very close to the real value. Since parameter estimation is an offline 
operation, we can start parameter estimation when gathering enough detected traffic to ensure 
accurate estimation. 
 

Table 2. Estimation values under different conditions 

w* w=15ms w=20ms w=25ms w=30ms 
mean stdev mean stdev mean stdev mean stdev 

We=10,000 13.24 1.99 18.79 3.12 23.21 3.33 28.54 3.03 
We=15,000 14.19 1.68 19.59 1.5 24.56 2.07 29.46 1.45 
We=20,000 15.31 0.32 19.93 0.46 25.01 1.34 29.75 1.17 

5. Conclusion 
Despite the entropy-based detection scheme is effective for most covert timing channels, the 
binning strategy based on training samples may cause a model mismatching case and cut down 
detection performance. In this paper, a new detection scheme for Jitterbug is proposed based 
on coefficient of variation feature, in which the fixed binning strategy works without reference 
samples. Furthermore, the parameter estimation method based on remarkable differential 
points is given. Experimental results show that our scheme maintains high detection 
performance for Jitterbug traffic generated by different overt traffic. Minor network jitter has 
little influence on detection rate while major network jitter makes Jitterbug invalid. The 
estimation scheme also works to a sound result by enough detected traffic. In the future, we 
will focus on estimating the pseudo-random sequence si to provide the ultimate decoding 
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message for data leakage forensics. Additionally, the detection and estimation problems of the 
Jitterbug variants, such as Liquid and Mimic, are also in the study plan. 
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