• Title/Summary/Keyword: Covariance Structure

Search Result 323, Processing Time 0.031 seconds

Resistant h-Plot for a Sample Variance-Covariance Matrix

  • Park, Yong-Seok
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.407-417
    • /
    • 1995
  • The h-plot is a graphical technique for displaying the structure of one population's variance-covariance matrix. This follows the mathematical algorithem of the principle component biplot based on the singular value decomposition. But it is known that the singular value decomposition is not resistant, i.e., it is very sensitive to small changes in the input data. In this article, since the mathematical algorithm of the h-plot is equivalent to that of principal component biplot of Choi and Huh (1994), we derive the resistant h-plot.

  • PDF

A Test for Equality Form of Covariance Matrices of Multivariate Normal Populations

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.20 no.2
    • /
    • pp.191-201
    • /
    • 1991
  • Given a set of data pxN$_{i}$, matrices X$_{i}$ observed from p-variate normal populations $\prod$$_{i}$~N($\mu$$_{I}$, $\Sigma$$_{i}$) for i=1, …, K, the test for equality form of the covariance matrices is to choose a hypothetical model which best explains the homogeneity/heterogeneity structure across the covariance matrices among the hypothesized class of models. This paper describes a test procedure for selecting the best model. The procedure is based on a synthesis of Bayesian and a cross-validation or sample reuse methodology that makes use of a one-at-a-time schema of observational omissions. Advantages of the test are argued on two grounds, and illustrative examples and simulation results are given.are given.

  • PDF

Formulation of New Hyperbolic Time-shift Covariant Time-frequency Symbols and Its Applications

  • Iem, Byeong-Gwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1E
    • /
    • pp.26-32
    • /
    • 2003
  • We propose new time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes showing hyperbolic TF structure. Obtained through hyperbolic warping the narrowband Weyl symbol (WS) and spreading function (SF) in frequency, the new TF tools are useful for analyzing LTV systems and random processes characterized by hyperbolic time shifts. This new TF symbol, called the hyperbolic WS, satisfies the hyperbolic time-shift covariance and scale covariance properties, and is useful in wideband signal analysis. Using the new, hyperbolic time-shift covariant WS and 2-D TF kernels, we provide a formulation for the hyperbolic time-shift covariant TF symbols, which are 2-D smoothed versions of the hyperbolic WS. We also propose a new interpretation of linear signal transformations as weighted superposition of hyperbolic time shifted and scale changed versions of the signal. Application examples in signal analysis and detection demonstrate the advantages of our new results.

Fuzzy Kalman filtering for a nonlinear system (비선형 시스템을 위한 퍼지 칼만 필터 기법)

  • No, Seon-Yeong;Ju, Yeong-Hun;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.461-464
    • /
    • 2007
  • In this paper, we propose a fuzzy Kalman filtering to deal with a estimation error covariance. The T-S fuzzy model structure is further rearranged to give a set of linear model using standard Kalman filter theory. And then, to minimize the estimation error covariance, which is inferred using the fuzzy system. It can be used to find the exact Kalman gain. We utilize the genetic algorithm for optimizing fuzzy system. The proposed state estimator is demonstrated on a truck-trailer.

  • PDF

Covariance Analysis Study for KOMPSAT Attitude Determination System

  • Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.70-80
    • /
    • 2000
  • The attitude knowledge error model is formulated for specifically KOMPSAT attitude determination system using the Lefferts/Markley/Shuster method, and the attitude determination(AD) error analysis is performed so as to investgate the on-board attitude determination capability of KOrea Multi-Purpose SATellite(KOMPSAT) using the covariance analysis method. Analysis results show there is almost no initial value effect on Attitude Determination (AD) error and the sensor noise effects on AD error are drastically decreased as is predicted because of the inherent characteristic of Kalman filter structure. However, it shows that the earth radiance effect of IR-sensor(earth sensor) and the bias effects of both IR-sensor and fine sun sensor are the dominant factors degrading AD error and gyro rate bias estimate error in AD system. Analysis results show that the attitude determination errors of roll, pitch and yaw axes are 0.056, 0.092 and 0.093 degrees, respectively. These numbers are smaller than the required values for the normal mission of KOMPSAT. Also, the selected on-orbit data of KOMPSAT is presented to demonstrate the designed AD system.

  • PDF

Global Feature Extraction and Recognition from Matrices of Gabor Feature Faces

  • Odoyo, Wilfred O.;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.207-211
    • /
    • 2011
  • This paper presents a method for facial feature representation and recognition from the Covariance Matrices of the Gabor-filtered images. Gabor filters are a very powerful tool for processing images that respond to different local orientations and wave numbers around points of interest, especially on the local features on the face. This is a very unique attribute needed to extract special features around the facial components like eyebrows, eyes, mouth and nose. The Covariance matrices computed on Gabor filtered faces are adopted as the feature representation for face recognition. Geodesic distance measure is used as a matching measure and is preferred for its global consistency over other methods. Geodesic measure takes into consideration the position of the data points in addition to the geometric structure of given face images. The proposed method is invariant and robust under rotation, pose, or boundary distortion. Tests run on random images and also on publicly available JAFFE and FRAV3D face recognition databases provide impressively high percentage of recognition.

RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

  • Chiba, Go;Tsuji, Masashi;Narabayashi, Tadashi
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.281-290
    • /
    • 2014
  • In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

Bayesian information criterion accounting for the number of covariance parameters in mixed effects models

  • Heo, Junoh;Lee, Jung Yeon;Kim, Wonkuk
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.301-311
    • /
    • 2020
  • Schwarz's Bayesian information criterion (BIC) is one of the most popular criteria for model selection, that was derived under the assumption of independent and identical distribution. For correlated data in longitudinal studies, Jones (Statistics in Medicine, 30, 3050-3056, 2011) modified the BIC to select the best linear mixed effects model based on the effective sample size where the number of parameters in covariance structure was not considered. In this paper, we propose an extended Jones' modified BIC by considering covariance parameters. We conducted simulation studies under a variety of parameter configurations for linear mixed effects models. Our simulation study indicates that our proposed BIC performs better in model selection than Schwarz's BIC and Jones' modified BIC do in most scenarios. We also illustrate an example of smoking data using a longitudinal cohort of cancer patients.

Stochastic elastic wave analysis of angled beams

  • Bai, Changqing;Ma, Hualin;Shim, Victor P.W.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.767-785
    • /
    • 2015
  • The stochastic finite element method is employed to obtain a stochastic dynamic model of angled beams subjected to impact loads when uncertain material properties are described by random fields. Using the perturbation technique in conjunction with a precise time integration method, a random analysis approach is developed for efficient analysis of random elastic waves. Formulas for the mean, variance and covariance of displacement, strain and stress are introduced. Statistics of displacement and stress waves is analyzed and effects of bend angle and material stochasticity on wave propagation are studied. It is found that the elastic wave correlation in the angled section is the most significant. The mean, variance and covariance of the stress wave amplitude decrease with an increase in bend angle. The standard deviation of the beam material density plays an important role in longitudinal displacement wave covariance.

A Nonlinear Navigation Filter for Biomimetic Robot (생체모방 로봇을 위한 비선형 항법 필터)

  • Seong, Sang-Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.175-180
    • /
    • 2012
  • A nonlinear navigation filter for biomimetic robot using analytic approximation of mean and covariance of state variable is proposed. The approximations are performed at the time update step in the filter structure. The mean is approximated to the 3rd order of Taylor's series expansion of true mean and the covariance is approximated to the 3rd order either. The famous EKF is a nonlinear filtering method approximating the mean to 1st order and the covariance to the 3rd order. The UKF approximate them to the higher orders by numerical method. The proposed method derived a analytical approximation of them for navigation system and therefore don't need so called sigma point transformation in UKF. The simulation results show that the proposed method can be a good alternative of UKF in the systems which require less computational burden.