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Fuzzy Kalman filiering for a nonlinear system
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In this paper, we propose a fuzzy Kalman filtering to deal with a estimation error

covariance. The T-S fuzzy model structure is further rearranged to give a set of

linear model using standard Kalman filter theory. And then, to minimize the

estimation error covariance, which is inferred using the fuzzy system. It can be used

to find the exact Kalman gain. We utilize the genetic algorithm for optimizing fuzzy
system. The proposed state estimator is demonstrated on a truck-trailer.
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1. Introduction

The design of a Kalman filter relies on
having an exact dynamic model of the
system under consideration in order to
provide optimal performance when the
design contains relatively small modeling
errors [1]. However, most dynamical systems
in the world have severe nonlinear
dynamics. It is a difficult work to design an
efficient filter for nonlinear systems.
Conventionally, known as the extended
Kalman filter (EKF), has been proposed for
state estimation by linearization of the

nonlinear systems around the present
estimate through application of linear
filterf2]. But, the statistical properties of
external disturbances and measurement

noises are rarely known.

In order to design of nonlinear, few works
have studied the estimation problem for
nonlinear systems. In the last decade, there
has been a rapidly growing interest in fuzzy
control and fuzzy estimation of nonlinear
systems[3,4]. Some of these published on
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fuzzy observer design. However these papers
usually deal with the noise-free case. This
fuzzy observers was designed for systems
that was not affected by noise and they
require a common solution to a set of
Ricatti equations, which may be difficult or
impossible to obtain [5].

This paper is concerned with the design
of fuzzy Klman filter for the nonlinear
system that is represented by T-S fuzzy
model structure. Which is further rearranged
to give a set of linear systems. First, we
represent the fuzzy system as a local linear
state space systems. Second, to find the
exact Kalman gain, we design that a state
estimator error covariance is represented by
T-S fuzzy model. Third, we construct a
global state estimator by combining the local
state estimators. That 1is, this model is
designed for a local linear state space model
using standard Kalman filter theory. Finally,
the proposed state estimator is demonstrate
on a truck-trailer.
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2. Problem formulation

Nonlinear system can be approximated as
locally linear systems or represented by the
T-S fuzzy model, which is composed of a
set of fuzzy inference rules. The ith rule of
the fuzzy linear model for nonlinear systems
if of the form

/3 z,(t) is F, and ... and z,(t) is F),
THENz(t+1) = Az (t) +B‘-w(t)
y(t) = Cz(t) +o(t), i=1,2,3,...L
(1)
where Fj; is the fuzzy set, y(t) is the

measured output, A4, B, and C are known
constant matrices, the process noise w(t) is
white with PSD S, the measurement noise
v(t) is white with PSD &S, and the process
noise and measurement noise are
uncorrelated. Now we define Z discrete time
signals z(¢t) and y(t). The final output of
the fuzzy system is inferred as follows:

£) [ Az () + Baw(t)]

z(t+1) }i‘
L i=1
y(t) =E

t))[Qx(t)+v(t)]

2)
where
=117,(@)
F;;(z,()) is the grade of membership of z;(t) in
F;, and
Azt
o)) =)
Yw;(2(t))
i=1

with w;(z(t)) = 0 for all t, we get the following
form:

L
ki (=(0)) = 3)

From these definitions, we define L discrete time
signals and it can be defined as

(4)

AW () + (OB e(),
() +pl)er)

where
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L
AW = Y ()4 w—zm ()5,
L
0= Vu0)G
'5)

3. Fuzzy Kalman filtering

We represent the nonlinear system into
linear system by using fuzzy model. We
combine the Kalman filter for the local
systems given in (5) to obtain a state
estimator for the T-S fuzzy model given in
(1). The state = of the system can be derived
by assuming a recursive estimator of the form.
The predicted state is represented as

' (t) = (- K(k)C(t)z (8) + K(t)y()  (7)
¢ (t+1)= Az +u(=(t) Buw(t) (8)
where [ is the identity matrix, "-"superscript
is to indicate a quantity before the

measurement is taken into account, and "+"
superscript to indicate a quantity after the
measurement is taken into  account.
Requiring the state estimate to be unbiased
results in the constraint [ ]. We define the
estimation error and its covariance P

e(t) = z(t)—z(t)
P(t) = ele(t)e(t)T]
where ¢ is the expected value operator.
However, we need to estimate exactly, the
estimation error is inferred by a
double-input single-output fuzzy system, for

)
(10)

which the jth fuzzy IF-THEN rule is
represented by
IF z,is Ay; and z, is Ay, (11)

THEN y; is e;
where two premise variables z; and z, are
the measurement residual e(k) and change

rate é(lc), respectively, consequent variable
y,; is the estimation error, and 4;; are fuzzy

set. It has the Gaussian membership functlon
with center w,; ; and standard deviation o;;

Z; _: ’
5 (U—') l (12)

[(1 ZT”) exp[—%~
will be

In this paper. the GA methods
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applied to optimize the parameters and the

structure of the system, wusing the
product-sum inference method, singleton
fuzzifier, center average defuzzifier, and

Gaussian membership function. That is, the
defuzzified output of the fuzzy model based
on the overall process noise with unknown
uncertainty is given by

Y

J

A(zy;) X A( xzj)

wy=

i=1
L

P

According to the approximation theorem
by the GA, the overall process noise is

x,.) X A z2j)

J

optimized. Then the estimation error
covariance in (10) can be expressed as
follows

= [ee7] (13)

Due to the estimated term e, the
covariance matrix of P {t+1) becomes

P(t+1) = AP (t) - K;() CP (1)) AT+ Be. BT

(14)

When the estimation error is employed, the
conventional Kalman filter has to be
modified. We can find the optimal Kalman
gain by using (14).

K(t)=F(t)CHCP()CT+S)"  (16)

The steady state Kalman filter presented
can be used to estimate the states of each
of the L dynamic systems. We can derive a
global filter, which is a linear combination of
the local steady state. And, to estimate
exactly, we correct the estimation error
covariance by using the fuzzy system.

4. Simulation results

In this section we consider state
estimation for a discrete time model of a
truck-trailer system. A noise-free
representation of a truck-trailer system can
be described as [4]

»(f+1):n(t)ﬁ-gfnn(u(t)),
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Ble+1) = () + L sin(a (1),
Mie+1) = M)+ VTcos(a(t))sm(M%i@ﬁl)
Bli+1) = Ble) + VTcos(a(t))cos(ﬂf—t—lgié@—)—)

where a is the angle of the truck, 8 is the
angle of the trailer, NV is northerly position
of the rear of the trailer, and £ is the
easterly position of the rear of the trailer, !
is the length of the truck, L is the length of
the trailer, 7" is the sampling time, V is the
constant speed of backward movement of
the truck, and u is the controlled steering
angle(measured counterclockwise with
respect to the truck orientation). The
following noisy fuzzy model, adapted from
[6], can be used to represent the above
system:

IFz(t) is F,

THEN z(t+1) = Az (k) + Bw (k)
y(k) = Cz (k) +v(k)

IFz(t) is F,

THEN z(t+1) = (A, (t) + Byw(t))

y(t) = G (t) +o(t)
The premise variable z(k) is given as

_ alt) VT
Z(t)_ﬂ(t)"}' 2/L

The membership function are defined as

F,={0} and F,={tw)} and we use
following system parameters:
1-VT/L 0 0
A= VT/L 1 0f,
(vD)?*/(2/L) VT 1
1-VT/L 0 0
A, = VT/L 1 o],
(vD)?¥/(2/L)(x/100) V/(x/100) 1
By =B,=L,5 C=C=hyy,
1=28m, L=55m, V=—1m/s T=0.5s

We will use the following matrices for the

measurement noise covariance S, =0.2

{Table1>The initial parameters of the GA

Parameters Values
Maximum Generation 200
Maximum Rule Number 50
Population Size 500
Crossover Rate 0.9
Mutation Rate 0.01
A 08
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truck angle error (degrees)

time (seconds)

Fig. 1 Truck angle error(degrees)
Figure 1 shows that the simulation results
of the proposed method. The dotted lines are
measurement errors and the solid lines are
estimation errors. And trailer position for a
typical simulation with the initial conditions
al0]=—45°, B[0]=—45°, and N[0]=—>5m.

4. Conclusions

The nonlinear systems via the TS fuzzy
system has been presented. The steady state
was represented by the TS fuzzy model
structure, which was further rearranged to
give a set of linear model using standard
Kalman filter theory. Then, to find the exact
Kalman gain, the estimation error covariance
was inferred by using fuzzy system. To
optimize the employed fuzzy system, the
genetic algorithm was utilized. The proposed

state estimator was demonstrate on a
truck-trailer.
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