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Abstract

We propose new time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and non까ationary random 

processes showing hyperbolic TF structure. Obtained through hyperbolic warping the narrowband Weyl symbol (WS) and 

spreading function (SF) in frequency, the new TF to이 s are useful for analyzing LTV systems and random processes 

characterized by hyperbolic time shifts. This new TF symbol, called the hyperbolic WS, satisfies the hyperbolic time-shift 
covariance and scale covariance properties, and is useful in wideband signal analysis. Using the new, hyperbolic time-shift 

covariant WS and 2-D TF kernels, we provide a formulation for the hyperbolic time-shift covariant TF symbols, which 

are 2-D smoothed versions of the hyperbolic WS. We also propose a new interpretation of linear signal transformations 

as weighted superposition of hyperbolic time shifted and scale changed versions of the signal. Application examples in 

signal analysis and detection demonstrate the advantages of our new results.

Keywords： Time-frequency symbol, Weyl symbol, Hyperbolic time-shift covariance, Spreading function, Quadratic 
time-frequency representations

I. Introduction

Quadratic time-frequency representations (QTFR) have 

been used for analyzing deterministic signals showing 

time-vaiying characteristics]],2]. Some prominent exam­

ples are the Wigner distribution, the Spectrogram, Choi- 
Williams distribution and so on[l,2]. These QTFRs are appro­
priate analysis tools for signals with linear time- frequency 
distributions. While the QTFRs are useful in analyzing 
and processing deterministic signal, time-f requency (TF)
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symb이s have been widely used in the analysis of linear 
time-varying (LTV) systems and non-stationary random 

processes[3-5]. Some prominent examples in TF symbols are 

the Weyl symbol (WS), the Levin symbol, the Page 

symbol and so on[3,5,6]. These TF symbols are proper 

tools for analyzing LTV systems and non-stationary 
random processes with linear TF characteristics[3-6]. 
Since in nature there may exist random processes/systems 
showing various (non-linear) characteristics in the TF 
plane, to analyze such processes/systems, we need differ­
ent TF tools which match non-linear structures of the 

processes/systems. Thus, there have been abundant TF 
symb이s like TF shift covariant symbols, time-shift and 
scale covariant symbols, exponential frequency shift covari 
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ant symbols, exponential time-shift covariant symbols and 
so (끼6,기. Here, "covariance” means whatever happens in 

a process happens in a TF symbol. Based on common 
covariance properties satisfied by TF symbols, classes of 
TF symbols have been fbrmulated[6]. That is, TF symbol 
members in a certain class satisfy common properties 
which can be utilized for analyzing random processes and 

linear systems showing specific TF characteristics. For 
example, the conventional narrowband Weyl symbol, the 
Flohn-Nirenberg symbol, the Levin symbol, the Page 

symbol, and the ^-generalized Weyl symbol in the TF 
siift covariant class satisfy the constant TF shift covar­

iance property, and they are proper analysis to이s for 

r；mdom processes and LTV systems with linear TF 

distributi(m[6,7].

In this paper, we propose a new class of TF symbols 
satisfying hyperbolic time-shift covariance and scale 

c avariance properties. We also study its relation with 
e listing TF symbols. The structure of this paper is as 

follows. In Section 2, we provide the definitions and 
properties of narrowband and wideband Weyl symbols. In 

c tiapter 3, we propose the new hyperbolic time-shift 

covariant symbol class, its examples and properties, and 
its relation to the hyperbolic frequency-shift TF symbol 

class. In Section 4, we provide application examples in 
aialysis and detection problems to show the benefit of the 
nsw hyperbolic time-shift covariant TF symbol. In Section 

5, we conclude this paper.

II. Convention기 Time-frequency Symbols

2.1. Narrowband Weyl Correspondence
The conventional narrowband WS and its 2-dimensional 

(2・D) Fourier transform, the spreading function (SF), are 
defined, respectively, as [3]

=匚纶« + -；) e-丿 2村 m (1)

S 貶(r,v)=匚 + y - 9 e-5 dt ⑶

fbr an operator C on &(R) with the operator kernel Kc(t, r) 
[8]. With :F匚:F-1, we obtain the unitarily equivalent 

frequency domain operator of C and its bi-frequency 
kernel *5 -i(4 〃), When the operator £ and :F匸F " are 

applied to a signal, they can be written as (C x)(t)= f KAf, 
r) x( r) dr and gF」X)侦尸 f 一藉以H 0 州 

respectively. Here, :F and :F 'l are the Fourier and inverse 

Fourier transform operators, respectively. When the 

operator £ is the autocorrelation operator Rx of a 
non-stationary random process x(t) with the kernel Krx(J, 

t)=E[x(7)x*( t)] and the expectation operator E[ the 

WS can be interpreted as the time-vaiying spectrum of the 

process. It is an analogy of the Wiener-Khinchine theorem 

in the stationary case. Also, when the operator C and its 
kernel KR, r) are an LTV system and its time-vaiying 

impulse response, the WS can be considered as the transfer 

function of the LTV system. It is an extended concept of 
the conventional relationship between the impulse 

response and the transfer function of a linear time­

invariant (LTI) system. The mapping between the operator 
£ and the Weyl symbol is called the Weyl correspon- 

dence[3,5].
The 1-D inner product of the operator input x(t) and 

output (£ x)(t) can be expressed as the 2-D inner product 
of the Wigner distribution (WD)[1,2] of the operator input 

and the WS of the operator,

J二(£ x)(r)x* (t)dt =匚]参£ (t, /) WDX (t, /) dt df (4) 

and the relationship in (4) is called the quadratic form of 

x(t)[5].Here, W)x(t,f)= f 欢t+드、)x、t一느')厂论”就 

is the Wigner distribution] 1,2] of the process x(t). The 

quadratic form provides a definition of a TF concentration 
measure[5], and is useful in TF detection[9,10] and 
analysis[ll] applications. In the sense of the quadratic 
form (4), we say that the WS is associated with the WD.

The WS in (1) and (2) preserves constant time shifts, 

constants frequency shifts, and scale changes on a random 
process[3,4]
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y(r)= =A WSRy (t,f) = WSRx (t-T,f)(5)

Y{f) = X{f-v) a WSry(") = WSrx"v) (6) 

Y(f)=孔必 WSRy (r,/) = WSR (at厶
J| 이 a 丫 * ⑺

where Rx and Ry are the autocorrelation operators of X(f) 
and Y(f), respectively, with the bi-frequency operator 

kernel /hx(£ p)=E[X(f)X*( y)]. The WS 시so satisfies the 

unitarity property defined as

匚匚 WS«Q WS 饵,/)山奸 才，““『妃瞞，,。써2 

m,n (8)

where em and gm(f) are eigenvalues and eigenfunctions, 

respectively, of the kernel of the operator £, and /„ and 

hn(t) are similarly defined for the operator V on Z2(R). 

Using (1) and the kernel expansion r)= g”( £) gn
*( r), one can express the WS of £ as a weighted summa­

tion of the Wigner distribution of the eigenfunctions of C, 
i.e.

wSc%»，M)gW). 
n

The SF in (3) provides an important interpretation of a 

time varying system output as a weighted superposition of 
time-shifted and frequency-shifted versions of the input 

signal x(t), where the weight is the SF[5], i.e. (C x)(t) 

=JTSFr( r, ^e~inTV x{t~r) drdv，Thus, the SF 
provides the amount of time shifts and frequency lags 
produced by the LTV system. This is comparable to the 

conventional interpretation of the (convolution) output of 

a linear time-invariant (LTI) system as a weighted 

superposition of time-shifted versions of the input signal. 

The weight is the impulse response of the LTI system and 

shows the amount of time shifts produced by the LTI 
system. The support region of the SF has been used to 
define under-spread random process[4], a useful concept 
in detection applications [9].

2.2. Wideband Weyl Correspondence
The wideband version of the WS, called the PqWS, is 

defined as[6,7,12]

P0WSe(Z,/) = /Q，％S(a)eM,m(a)eF2)/2如出，/>0

where Bis a. frequency domain operator acting on a signal 

X(f), i.e. (B X)(j)= f rB(f,u)X( v)也.Here, rB 也 0 is 
the bi-frequency kernel of B defined on L2(R+) and A 

((z)=( a/2)/(sinh( q/2)). The mapping between B and PoWS 

is called the wideband or affine Weyl correspondence 

[6,12]. The PoWS is associated with the unitary Bertrand 

Po-distribution[13], and the 1-D inner product of the 
operator input and output can be written as the 2-D inner 

product of the PoWS of the operator and the 
Po-distribution of the input

罗(BX)(f) X\f) df 二 PoWSMJ) Pox\t,f) dt df.

The PoWS satisfies the time-shift covariance in (5), the 

scale covariance in (7), and the hyperbolic time-shift 
covariance properties, i.e.

ySNX(/)e*W 3 PoWSRy(〃) = PoWSRx。专，/)•

The wideband version of the spreading function is 
defined as[6,12]

ws%(r,/) =r//硏/n(a)e-a/2) Ma)/W

The WSF can be used to interpret the system output as 
the weighted superposition of time-shifted and scale 

changed versions of the input, i.e.

(3 X)(/) = JJwSFB(r,a)ey25rT,(0<) 士小夕 dr da

where zi(Q)= e

When LTV systems produce dispersive (non-constant) 
time shifts or dispersive frequency shifts, the conventional 
narrowband/wideband WS and SF are no longer adequate 
to analyze LTV systems whose nonstationary charac­
teristics are not matched to simple time and frequency 
shifts. Thus, in this paper, we propose new TF symbols 
and spreading functions as tools for analyzing systems 
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디/hich produce dispersive (especially hyperbolic) time 

shifts on the signal. These new TF symbols are important 

since they can be interpreted as time-varying transfer 
1 unctions for LTV systems producing hyperbolic time 

shifts. We derive such TF symbol and spreading function 

1 y hyperbolically warping the conventional narrowband 
WS and SF, respectively. We provide a new TF 

formulation of the quadratic form in (4) for linear systems 

with TF characteristics matched to a hyperbolic warping. 
Special examples will be given to demonstrate how the 

hyperbolic time-shift covariant TF symbol and spreading 

fjnction greatly simplify when matched to the system. 
Analysis and detection application examples demonstrate 

the importance of these new TF techniques.

Illi. Hyperbolic Time-shift Covariant Symbols

3.1. Hyperbolic Weyl Symbol and Spreading 
Function

If a system imposes hyperbolic time shifts and scale 

changes on the input signal, new WS and new SF are 
needed for analysis. The TF geometry of these new WS 
aid SF should reflect the hyperbolic system changes on 
tlie input signal. Thus, for an operator B on Z2(R+) with 

ksmel 7b (f, 〃)，we define the hyperbolic WS (HWS) and 

SF (HSF), respectively, as

IIWSM力= e辭，fe*2)e-j2哪郞,/>0(9)

HSF*,仞=£ rB(f Z 2,2丿次*/矿

The relation between the HWS and 나此 HSF is given 
as

喚訟,仞=尸1 HW%弓：/)

where P丿r {純)}=/故。沏顷力//就 />0, is a version 

o' the Mellin transfbrm[13,14]. The HWS and HSF can 
be obtained from the narrowband WS and SF defined in 
(2) and (3) through axis warping as

HWS泌，力= WS”, bw -1() fr In-^), />0
h h Jr (JU 丿

HS%&外 S%,龄一弓，")

h h Jr (11)

where is a positive reference frequency. Here,)以 is an 

axis warping operator defined as X)(f)^ /ef/fr X(fr 

eflfr) and ()他-1 Wh X)(f)=X(f)\l^\. The equation (10) 

shows that the hyperbolic WS in (9) can be obtained from 

the conventional WS in (2) by first unitarily warping the 
operator B and then transforming the TF axes. For the HSF 

in (11), the axes are simply scaled since they show cmly 
relative TF lags, not absolute TF locations.

The HWS preserves hyperbolic time shifts and scale 
changes on a random process x(t), i.e.

W) = xo*T2從in/ e hwsRy(/,/)= hwsRx a-p/)

(12)

n HWSry(")= HWS"心.

(13)

The HWS satisfies the unitarity property in (8)

££ HWSb(仃)HWS
m,n

vdiere A„ and Un(f) are the eigenvalues and eigenfimctions 

of the kernel of the operator B and “師 and EQ) are 

the eigenvalues and eigenfunctions of the kernel of the 

operator T>, respectively. The quadratic form in (4) can 
now be written in terms of the HWS and Qx(tJ), the 
Altes-Marinovic Q-distribution[14],

£( B 芝8 £ HWSB(Z,/) Qx(t,f) dt df.

This new form of the quadratic form may be useful in 
detection applications of non-stationary processes and 
systems with hyperbolic TF characteristics. These 
formulations are important as they provide a new 
interpretation of these system outputs as weighted 
superposition of hyperbolic time-shifted and scale changed 
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versions of the input signal, i.e.

(BX)(/)=匚匚 HSFb(W)好，e3En(/)x(W)岑四.

-Q0 _oc e J*

Thus, HSFb weighs the relative importance of hyper­
bolic time shifts and scale changes caused by a linear 

system. In Section 4, we provide application examples to 

demonstrate the importance of the HWS.

3.2. Hyperb이ic Time-shift Covariant Symbols
The hyperb이ic time-shift covariant symbols (HTS) can 

be defined in terms of the 2-D kernel and the

hyperbolic Weyl symbol HWS in (9) as

球鸵,/或 J二〈喺(”-/7,ln("))HWSM；广)"矿,/>0.

(14)

Here, We use the superscript (H) to indicate the 
hyperbolic version of TF symbols. Any TF symbol in this 

formulation satisfies the hyperbolic time shift covariance 

property in (12) and the scale covariance property in (13). 
We can show that if the 2-D kernel | t the

HTS satisfies the unitarity property as in

hts^>(/,/)hts^>(/,/)dtdf=5; #|2.
m,n

By specifying the 2-D kernel in (14), we can obtain 
special examples of the HTS. For examples, if &切h饵(tj)=

the HTS simplifies to the hyperbolic Weyl 
symbol HWS in (9) and if 6)四/ 施汁 in A( £)) 

仑讫霏电d& the HTS becomes the wideband Po-Weyl 

symb이 with A(0) defined in Section 2.2.

3.3. Relationship with the Hyperbolic Frequency­
shift Covariant Symbols

The hyperbolic frequency-shift covariant TF symbols 
have been introduced in[6,7]. The hyperbolic version of 
the WS satisfying the hyperbolic frequency-shift covar­
iance is defined as

HWSaT (t,f) = ?£ Kj^(t e°2, te-"2飮，Z>0.

(15)

Here, the operator N on Z2(R+) is defined in time with 

its kernel KmZ力[6,7]. If we compare the new hyperbolic 

time-shift covariant WS in (9) proposed in Section 3.1 and 
the hyperbolic frequency-shift covariant WS in (15), we 

can see that they have the duality relationship each other. 

The hyperbolic time-shift covariant WS is obtained from 

the warping relationship in (10) using the frequency 

domain formulation of the WS in (2) and the hyperbolic 

axis warping operator in frequency . On the other hand, 

the hyperbolic frequency shift covariant WS in (15) can 
be obtained using the time domain formulation of the WS 

in (1) and the hyperbolic axis warping operator in time 

[6,7]. The narrowband WS in (1) is the only TF symbol 
which is equal to its dual frequency formulation in (2).

IV. Application Examples

4.1. Analysis Application
In order to demonstrate the importance of the new 

hyperbolic time-shift covariant TF symbol , we analyze a 
hyperbolic random process X(f)= Here, are

uncorrelated, zero-mean random weights and Xi(f)= 

e;27rC,ln(/\/>0, i—1,2,3 are hyperbolic FM, deterministic 

signals. Note that each signal term X舫 has hyperbolic group 
delay, 이，One can show that the hyperbolic WS in (9) 

of the correlation operator Rx with kernel rnx(f, v)= 

丄시 simplifies to

3
HWSRx(") = £E[|a,|2]sT，/>0.

J (E丿

Figure 1 shows the contour plots of (a) the conventional 

WS versus (b) the HWS of Rx of a windowed X(f). Both 
show time-varying spectra with hyperbolic TF charac­
teristics. The advantage of the HWS in (16), is that it is 
ideally localized along the three group delay curves t=이f 
in the TF plane. The disadvantage of the conventional WS
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(a) (b)

Fi미」re 1. a) Weyl symbol, WSRx(t, f), and b) hyperbolic WS, HWSRxft, f) of a hyperb이c process X(f). The horizontal axis is for 
time and the vertical for normalized frequency.

is that it produces spurious components along hyperbolae 

since it does not match the intrinsic hyperbolic TF 

characteristics.

4.2. Detection Application
Next, we consider the detection of a known determin­

istic signal s(t) with hyperbolic TF characteristics in 
nc»nstationary Gaussian random noise n(t). Assume that the 

neise has the correlation function Rn(t, r) whose support 

region area is less than unity in the hyperbolic SF domain. 
Here, the support region of a hyperbolic SF, HSFrJ £), 

of the noise process n(t) is the region in (0) where 

HSFrK〈, £) t느0. The test statistic of the optimal 
likelihood ratio detector is Re( <Rn1 x, s> } where Rn 

is the correlation operator and x(t) = s(t) + n(t) is the 

received signal. The inner product is defined as <xf y>= J、 
x(t)y*(t)dt and Re(a} is the real part of a.

Using the hyperbolic version of the quadratic form, one 

ol>tains

Re( < >}=匚 J； HWSr4 (t,f) • Re{Qxs。,/)} dt df

where Qxs(t,fi is the cross ^-distribution of x(t) and s(t). 
Similar to the conventional underspread operator approxi­

mations in [6,7], we show that if the hyperbolic SFs of 
two operator y and S are confined in a small area (jointly 
ui iderspread), then the hyperbolic WS of the composite 
operator yS can be approximated as the product of the 
hyperbolic WS of each operator, i.e.

HWS“(")。HWSy(Z,/) • HWSs(Q).

For the two correlation operators R« and Rn-1, we show 

that

HWS 1 (/,/)«HWSr (”)・HWS 1 (r,/)«l.
RnKn Kn

This simplifies the TF test statistic fbr detecting a 

deterministic signal

Re{ v > } ~匚 £ Re(eAS(/,/)}/HWSRn (/,/) dt df.

V. Conclusions

The conventional WS and SF are most useful fbr 

systems producing constant time shifts and frequency 

shifts on the signal. The WS are time-frequency repre­

sentations that can be interpreted as time-varying spectra 
fbr random processes. In this paper, using warping 

techniques, we proposed the new hyperbolic time-shift 
covariant WS and SF. By applying 2-D TF kernel to the 
new hyperbolic time-shift covariant WS, we also derived 
the hyperbolic time-shift TF symb이s. By selecting a 
specific kernel, we can obtain a certain hyperbolic TF 
symbol. We also showed the duality relationship between 
the newly obtained hyperbolic time-shift covariant WS and 
the hyperbolic frequency-shift covariant WS. The analysis 
and detection application examples confirm the importance 

Formulation of New Hype「b이ic Time-shift Covariant Time-frequency Symbols and Its Applications 31



and usefulness of the new hyperbolic time-shift covariant 

TF symbols.
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