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Abstract

We propose new time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random
processes showing hyperbolic TF structure. Obtained through hyperbolic warping the narrowband Weyl symbol (WS) and
spreading function (SF) in frequency, the new TF tools are useful for analyzing LTV systems and random processes
characterized by hyperbolic time shifts. This new TF symbol, called the hyperbolic WS, satisfies the hyperbolic time-shift
covariance and scale covariance properties, and is useful in wideband signal analysis. Using the new, hyperbolic time-shift
covariant WS and 2-D TF kernels, we provide a formulation for the hyperbolic time-shift covariant TF symbols, which
are 2-D smoothed versions of the hyperbolic WS. We also propose a new interpretation of linear signal transformations
as weighted superposition of hyperbolic time shified and scale changed versions of the signal. Application examples in
signal analysis and detection demonstrate the advantages of our new results.
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time-frequency representations

I. Introduction

Quadratic time-frequency representations (QTFR) have
been used for analyzing deterministic signals showing
time-varying characteristics[1,2]. Some prominent exam-
ples are the Wigner distribution, the Spectrogram, Choi-
Williams distribution and so on[1,2]). These QTFRs are appro-
priate analysis tools for signals with linear time- frequency
distributions. While the QTFRs are useful in analyzing
and processing deterministic signal, time-f requency (TF)
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symbols have been widely used in the analysis of linear
time-varying (LTV) systems and non-stationary random
processes[3-5]. Some prominent examples in TF symbols are
the Weyl symbol (WS), the Levin symbol, the Page
symbol and so on[3,5,6]. These TF symbols are proper
tools for analyzing LTV systems and non-stationary
random processes with linear TF characteristics[3-6].
Since in nature there may exist random processes/systems
showing various (non-linear) characteristics in the TF
plane, to analyze such processes/systems, we need differ-
ent TF tools which match non-linear structures of the
processes/systems. Thus, there have been abundant TF
symbols like TF shift covariant symbols, time-shift and
scale covariant symbols, exponential frequency shift covari


mailto:ibg@kangnung.ac.kr

ant symbols, exponential time-shifi covariant symbols and
so on[6,7]. Here, “covaniance” means whatever happens in
a process happens in a TF symbol. Based on common
covariance properties satisfied by TF symbols, classes of
1F symbols have been formulatedf6]. That is, TF symbol
members in a certain class satisfy common properties
v/hich can be utilized for analyzing random processes and
linear systems showing specific TF characteristics. For
example, the conventional narrowband Weyl symbol, the
Kohn-Nirenberg symbol, the Levin symbol, the Page
symbol, and the o-generalized Weyl symbol in the TF
saift covariant class satisfy the constant TF shift covar-
iance property, and they are proper analysis tools for
random processes and LTV systems with linear TF
distribution[6,7].

In this paper, we propose a new class of TF symbols
satisfying hyperbolic time-shift covariance and scale
covariance properties. We also study its relation with
existing TF symbols. The structure of this paper is as
foliows. In Section 2, we provide the definitions and
properties of narrowband and wideband Weyl symbols. In
chapter 3, we propose the new hyperbolic time-shift
covariant symbol class, its examples and properties, and
its relation to the hyperbolic frequency-shift TF symbol
class. In Section 4, we provide application examples in
analysis and detection problems to show the benefit of the
naw hyperbolic time-shift covariant TF symbol. In Section
5, we conclude this paper.

Il. Conventional Time-frequency Symbols

2.1. Narrowband Weyl Correspondence

The conventional narrowband WS and its 2-dimensional
(:>-D) Fourier transform, the spreading function (SF), are
dzfined, respectively, as[3]

\VSK(tf)-mec(t+%,t~52—) e~ 17 gy .

=fmpfﬁ}_'l (f + 1;': - %) ej2mv av (2)

SF )= f MK,:(I-P%,.I‘-%) e~ IP gy 3)
for an operator £ on LAR) with the operator kemel X, o)
[8]. With FLF ™, we obtain the unitarily equivalent
frequency domain operator of £ and its bi-frequency
kernel I'rer 1(f, v). When the operator £ and FLF ' are
applied to a signal, they can be written as (£ x}(t)= [ K1,
D xDdr and (FLF ™ X=] Tscr -Af, WACV) dv,
respectively. Here, 7 and F * are the Fourier and inverse
Fourler transform operators, respectively. When the
operator £ is the autocomrelation operator Rx of a
non-stationary random process x(t) with the kemnel Kg.{z,
T=E[x(t)x*( r)} and the expectation operator Ef-], the
WS can be interpreted as the time-varying spectrum of the
process. It is an analogy of the Wiener-Khinchine theorem
in the stationary case. Also, when the operator £ and its
kernel K, 7} are an LTV system and its time-varying
impulse response, the WS can be considered as the transfer
function of the LTV system. It is an extended concept of
the conventional relationship between the impulse
reﬁponse and the transfer fumction of a linear time-
invariant (LTI) system. The mapping between the operator
L and the Weyl symbol is called the Weyl correspon-
dence[3,5].

The 1-D inner product of the operator input x(t) and
output (£ x)(t) can be expressed as the 2-D inner product
of the Wigner distribution (WD)[1,2] of the operator input
and the WS of the operator,

S eo0x ode=f7[TWS .0) WDy Hatdl g
and the relationship in (4) is called the quadratic form of

X()fS]. Here, WDx(¢, /) = J':*;x( t+ % )x*(¢— *21'- Ye 2 g

is the Wigner distribution[1,2] of the process x(t). The
quadratic form provides a definition of a TF concentration
measure[5], and is useful in TF detection[9,10] and
analysis{11] applications. In the sense of the quadratic
form (4), we say that the WS is associated with the WD.

The WS in (1) and (2) preserves constant time shifts,
constants frequency shifts, and scale changes on a random
process[3.,4]
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where Rx and Ry are the autocorrelation operators of X(f)
and Y(f), respectively, with the bi-frequency operator

kemel I'nd(f, VFE[X(X*( v)]. The WS also satisfies the
unitarity property defined as

2
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where ¢, and g,(# are eigenvalues and eigenfunctions,
respectively, of the kemel of the operator £, and 7, and
ha(t) are similarly defined for the operator V on LAR).

Using (1) and the kernel expansion Ki(t, 1) = 20, &, 24(9) .
*( 1), one can express the WS of £ as a weighted summa-

tion of the Wigner distribution of the eigenfunctions of £,

ie.

WS.(1, /)= Es,, WDg (. 1).

The SF in (3) provides an important interpretation of a
time varying system output as a weighted superposition of
time-shifted and frequency-shifted versions of the input
signal x(t), where the weight is the SF[5], i.e. (£ x)(?)
= [SFc1,v) e /"™ »(¢t—1) ¢ drdy. Thus, the SF
provides the amount of time shifts and frequency lags
produced by the LTV system. This is comparable to the
conventional interpretation of the (convolution) output of
a linear time-invariant (LTI) system as a weighted
superposition of time-shifted versions of the input signal.
The weight is the impulse response of the LTI system and
shows the amount of time shifts produced by the LTI
systeml The support region of the SF has been used to
define under-spread random process[4], a useful concept
in detection applications[9].

2.2. Wideband Weyl Correspondence
The wideband version of the WS, called the PoWS, is
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defined as[6,7,12]

RWSg(e /) = ff. Z5(A@ 2, plare e da, f>0

where B is a frequency domain operator acting on a signal
X(f), ie. BXYH=F I's (f, )X v} dv. Here, I's (f, 1) is
the bi-frequency kernel of B defined on LyR") and A
( @)=( a/2)/(sinh( o/2)). The mapping between B and PyWS
is called the wideband or affine Weyl correspondence
[6,12]. The PoWS is associated with the unitary Bertrand
Po-distribution[13), and the 1-D inner product of the
operator input and output can be written as the 2-D inner
product of the PoWS of the operator and the
Pq-distribution of the input

L BN X (N df =f [ PoWSg(e, 1) Poy (1, /) it df.

The PoWS satisfies the time-shift covariance in (5), the
scale covariance in (7), and the hyperbolic time-shift
covariance properties, i.c.

Y(f)= X(f)e'ﬂaslnf - POWSR}«' &= POWSRX (] —%‘,f).

The wideband version of the spreading function is
defined as[6,12)

WSFg(t, ) -J:fj}(ﬂ(a)eufz’ﬂ(a)e-aﬁ) Ala) 2 .

The WSF can be used to interpret the system output as
the weighted superposition of time-shifted and scale
changed versions of the input, i.e.

Jore (o)

(B XX 1) =f[WSFs(r,a)e :/%:X(eiﬂ‘) dr dat
where ()= e ~*?/A(a).

When LTV systems produce dispersive (non-constant)
time shifts or dispersive frequency shifts, the conventional
narrowband/wideband WS and SF are no longer adequate
to analyze LTV systems whose nonstationary charac-
teristics are not matched to simple time and frequency
shifts, Thus, in this paper, we propose new TF symbols
and spreading functions as tools for analyzing systems



which produce dispersive (especially hyperbolic) time
shifts on the signal. These new TF symbols are important
since they can be interpreted as time-varying transfer
functions for LTV systems producing hyperbolic time
shifts. We derive such TF symbol and spreading function
ty hyperbolically warping the conventional narrowband
WS and SF, respectively. We provide a new TF
formulation of the quadratic form in (4) for linear systems
vith TF characteristics matched to a hyperbolic warping.
Special examples will be given to demonstrate how the
hyperbolic time-shift covariant TF symbol and spreading
fanction greatly simplify when matched to the system.
Znalysis and detection application examples demonstrate
the importance of these new TF techniques.

fl. Hyperbolic Time-shift Covariant Symbols

3.1, Hyperbolic Weyl Symbol and Spreading
Function

If a system imposes hyperbolic time shifts and scale
changes on the input signal, new WS and new SF are
needed for analysis. The TF geometry of these new WS
and SF should reflect the hyperbolic system changes on
the input signal. Thus, for an operator B on LyR") with
kernel I's (f; v), we define the hyperbolic WS (HWS) and
SF (HSF), respectively, as

WS =1 [ Tulf ¢, e 2)e 2P dp, £50,,
HSFp(c.8) 'J: 7Bl e* 2, fe"&' z)e—fhglnfdf.

The relation between the HWS and the HSF is given

as
TR B

where Pr. o (XH}=[ X e2*2 P [ £df, £>0, isaversion
o? the Mellin transform{13,14]. The HWS and HSF can
b obtained from the narrowband WS and SF defined in
(z) and (3) through axis warping as

i /
HWS51)= WS,y gy A L) 120

HSFg(c, f) = SE 1 LB
568 =SFy g 1 o S, B -

where f; is a positive reference frequency. Here, W, is an
axis warping operator defined as (W, )0()‘)=\/7?’ X0
e’") and W, ' Wi X()=X(0[14]. The equation (10)
shows that the hyperbolic WS in (9) can be obtained from
the conventional WS in (2) by first unitarily warping the
operator 8 and then transforming the TF axes. For the HSF
in (11), the axes are simply scaled since they show only
relative TF lags, not absolute TF locations.

The HWS preserves hyperbolic time shifts and scale
changes on a random process x(t), i.e.

Y(f) = X(f)e™ 8™ = HWSp, (t,f)=HWSg,, (:-%, 2

(12)

¥( f)-LX(f ) = HWSg, (/) =HWSg, (at.é)-

Jai " a
(13)
The HWS satisfies the unttarity property in (8)

L0, HWS 0.0y HWS (. fydtdf = S Aty JULNE 5 o]

where A, and U, (f) are the eigenvalues and eigenfunctions
of the kernel of the operator B and y,, and E,(f) are
the eigenvalues and eigenfunctions of the kernel of the
operator D, respectively. The quadratic form in (4) can
now be written in terms of the HWS and Oxtf), the
Altes-Marinovic Q-distribution[14],

Jo BXXNX (D <[, [ HWSp(s, 1) Qx (. de df.

This new form of the quadratic form may be useful in
detection applications of non-stationary processes and
systems with hyperbolic TF characteristics. These
formulations are important as they provide a new
interpretation of these system outputs as weighted
superposition of hyperbolic time-shifted and scale changed
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versions of the input signal, i.e.

- incp - j2asin(f) yo S B dg
(BxXN=f [ HSFsis.p)e"™® e X

Thus, HSFz weighs the relative importance of hyper-
bolic time shifts and scale changes caused by a linear
system. In Section 4, we provide application examples to
demonstrate the importance of the HWS,

3.2. Hyperbolic Time-shift Covariant Symbols

The hyperbolic time-shift covariant symbols (HTS) can
be defined in terms of the 2-D kemel 8™ urs(?f) and the
hyperbolic Weyl symbol HWS in (9) as

HTSP ¢, f)-_[: f SN Se-11, rn(%))ﬂwsﬁ(:‘, Fhdrdf', £>0,

(14

Here, We use the superscript (H) to indicate the
hyperbolic version of TF symbols. Any TF symbol in this
formulation satisfies the hyperbolic time shift covariance
property in (12) and the scale covariance property in (13).
We can show that if the 2-D kemel | @ urs(rf)|=1, the
HTS satisfies the unitarity property as in

F 1 BTS00 ) HTSE 6yt df = S iU N En N ]
0

By specifying the 2-D kemel in (14), we can obtain
special examples of the HTS. For examples, if dmm(tﬂ=
XD é&(H, the HTS simplifies to the hyperbolic Weyl
symbol HWS in (9) and if 6 urs(tf)=/ &b+ In A( 8)
e dp  the HTS becomes the wideband Py-Weyl
symbol with A(g) defined in Section 2.2.

3.3. Relationship with the Hyperbolic Frequency-

shift Covariant Symbols
The hyperbolic frequency-shift covariant TF symbols
have been introduced in[6,7]. The hyperbolic version of
the WS satisfying the hyperbolic frequency-shift covar-

iance is defined as
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HWSN @)=t [ Kpttes',1e™5"2 )™/ dg | 150,

(13)

Here, the operator A on Lx(R") is defined in time with
its kernel Kx(1,/)[6,7]. If we compare the new hyperbolic
time-shift covariant WS in (9) proposed in Section 3.1 and
the hyperbolic frequency-shift covariant WS in (15), we
can see that they have the duality relationship each other.
The hyperbolic time-shift covariant WS is obtained from
the warping relationship in (10) using the frequency
domain formulation of the WS in (2) and the hyperbolic
axis warping operator in frequency . On the other hand,
the hyperbolic frequency shift covariant WS in (15) can
be obtained using the time domain formulation of the WS
in (1} and the hyperbolic axis warping operator in time
[6,7). The narrowband WS in (1) is the only TF symbol
which is equal to its dual frequency formulation in (2).

IV. Application Examples

4.1. Analysis Application

In order to demonstrate the importance of the new
hyperbolic time-shift covariant TF symbol , we analyze a
hyperbolic random process X(f= o; X,;(#. Here, o, are
uncorrelated, zero-mean random weights and Xi()=
X6 £50, i=1,2,3 are hyperbolic FM, deterministic
signals. Note that each signal term X} has hyperbolic group
delay, C/f. One can show that the hyperbolic WS in (9)
of the correlation operator Rx with kemel I'af{f,v) =
E[X{HX*( v)] simplifies to

3 ) o R
HWSgy €.0)= S Bl 18-, £ >0 (16

Figure 1 shows the contour plots of (a) the conventional
WS versus (b) the HWS of Rx of a windowed X{#}. Both
show time-varying spectra with hyperbolic TF charac-
teristics. The advantage of the HWS in (16), is that it is
ideally localized along the three group delay curves =Cy/f
in the TF plane. The disadvantage of the conventional WS
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Figure 1. a} Weyl symbol, WSRx(t, f}. and b) hyperbolic WS, HWSRx{t, f} of a hyperbotic process X(f). The horizontal axis is for

time and the vertical for normalized frequency.

is that it produces spurious components along hyperbolae
since it does not match the intrinsic hyperbolic TF
characteristics.

4.2. Detection Application

Next, we consider the detection of a known determin-
istic signal s(t) with hyperbolic TF characteristics in
nonstationary Gaussian random noise n(t). Assume that the
noise has the correlation function R, ¢} whose support
region area is less than unity in the hyperbolic SF domain.
Here, the support region of a hyperbolic SF, HSFr«( ¢, 8),
of the noise process n(t) is the region in ( £, 8) where
HSFra( &, 8) +0. The test statistic of the optimal
likelihood ratio detector is Re{ <R," x, s> } where Rn
is the correlation operator and x(r) = s + n(?) is the
received signal. The inner product is defined as <x, y>=f
x{y*@)dt and Re{a} is the real part of a.

Using the hyperbolic version of the quadratic form, one
obtains

Re{<Ryxs>}=f j: HWS, 1 (/) Re{Qus(t./)} dt &f

where Qxs(?.f) is the cross O-distribution of x() and s(?).
Similar to the conventional underspread operator approxi-
mations in [6,7], we show that if the hyperbolic SFs of
two operator ) and S are confined in a small area (jointly
underspread), then the hyperbolic WS of the composite
operator VS can be approximated as the product of the
hyperbolic WS of each operator, i.e.

HWSys (4, )~ HWSy(, £)- HWS (2, /).

For the two comrelation operators R, and Ra", we show
that

HWSRHR;} (., f)~HWSg (/) HWS 1 ¢, f)=~1.

This simplifies the TF test statistic for detecting a
deterministic signal

Re(<Rixs>3m [0 [ RetQus(t N/HWSy (/) et df.

V. Conclusions

The conventional WS and SF are most useful for
systems producing constant time shifts and frequency
shifts on the signal. The WS are time-frequency repre-
sentations that can be interpreted as time-varying spectra
for random processes. In this paper, using warping
techniques, we proposed the new hyperbolic time-shift
covariant WS and SF. By applying 2-D TF kernel to the
new hyperbolic time-shift covariant WS, we also derived
the hyperbolic time-shift TF symbols. By selecting a
specific kemel, we can obtain a certain hyperbolic TF
symbol. We also showed the duality relationship between
the newly obtained hyperbolic time-shift covariant WS and
the hyperbolic frequency-shift covariant WS. The analysis
and detection application examples confirm the importance
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and usefulness of the new hyperbolic time-shift covariant
TF symbols.
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