• Title/Summary/Keyword: Covariance Matrix

Search Result 489, Processing Time 0.029 seconds

Design of FIR/IIR Lattice Filters using the Circulant Matrix Factorization (Circulant Matrix Factorization을 이용한 FIR/IIR Lattice 필터의 설계)

  • Kim Sang-Tae;Lim Yong-Kon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • We Propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used for spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR filter and for the case of the In filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).

Modeling of random effects covariance matrix in marginalized random effects models

  • Lee, Keunbaik;Kim, Seolhwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.815-825
    • /
    • 2016
  • Marginalized random effects models (MREMs) are often used to analyze longitudinal categorical data. The models permit direct estimation of marginal mean parameters and specify the serial correlation of longitudinal categorical data via the random effects. However, it is not easy to estimate the random effects covariance matrix in the MREMs because the matrix is high-dimensional and must be positive-definite. To solve these restrictions, we introduce two modeling approaches of the random effects covariance matrix: partial autocorrelation and the modified Cholesky decomposition. These proposed methods are illustrated with the real data from Korean genomic epidemiology study.

Switching properties of bivariate Shewhart control charts for monitoring the covariance matrix

  • Gwon, Hyeon Jin;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1593-1600
    • /
    • 2015
  • A control chart is very useful in monitoring various production process. There are many situations in which the simultaneous control of two or more related quality variables is necessary. We construct bivariate Shewhart control charts based on the trace of the product of the estimated variance-covariance matrix and the inverse of the in-control matrix and investigate the properties of bivariate Shewart control charts with VSI procedure for monitoring covariance matrix in term of ATS (Average time to signal) and ANSW (Average number of switch) and probability of switch, ASI (Average sampling interval). Numerical results show that ATS is smaller than ARL. From examining the properties of switching in changing covariances and variances in ${\Sigma}$, ANSW values show that it does not switch frequently and does not matter to use VSI procedure.

Application of covariance adjustment to seemingly unrelated multivariate regressions

  • Wang, Lichun;Pettit, Lawrence
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.577-590
    • /
    • 2018
  • Employing the covariance adjustment technique, we show that in the system of two seemingly unrelated multivariate regressions the estimator of regression coefficients can be expressed as a matrix power series, and conclude that the matrix series only has a unique simpler form. In the case that the covariance matrix of the system is unknown, we define a two-stage estimator for the regression coefficients which is shown to be unique and unbiased. Numerical simulations are also presented to illustrate its superiority over the ordinary least square estimator. Also, as an example we apply our results to the seemingly unrelated growth curve models.

Covariance-driven wavelet technique for structural damage assessment

  • Sun, Z.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-140
    • /
    • 2006
  • In this study, a wavelet-based covariance-driven system identification technique is proposed for damage assessment of structures under ambient excitation. Assuming the ambient excitation to be a white-noise process, the covariance computation is shown to be able to separate the effect of random excitation from the response measurement. Wavelet transform (WT) is then used to convert the covariance response in the time domain to the WT magnitude plot in the time-scale plane. The wavelet coefficients along the curves where energy concentrated are extracted and used to estimate the modal properties of the structure. These modal property estimations lead to the calculation of the stiffness matrix when either the spectral density of the random loading or the mass matrix is given. The predicted stiffness matrix hence provides a direct assessment on the possible location and severity of damage which results in stiffness alteration. To demonstrate the proposed wavelet-based damage assessment technique, a numerical example on a 3 degree-of-freedom (DOF) system and an experimental study on a three-story building model, which are all under a broad-band excitation, are presented. Both numerical and experimental results illustrate that the proposed technique can provide an accurate assessment on the damage location. It is however noted that the assessment of damage severity is not as accurate, which might be due to the errors associated with the mode shape estimations as well as the assumption of proportional damping adopted in the formulation.

A Novel Covariance Matrix Estimation Method for MVDR Beamforming In Audio-Visual Communication Systems (오디오-비디오 통신 시스템에서 MVDR 빔 형성 기법을 위한 새로운 공분산 행렬 예측 방법)

  • You, Gyeong-Kuk;Yang, Jae-Mo;Lee, Jinkyu;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.326-334
    • /
    • 2014
  • This paper proposes a novel covariance matrix estimation scheme for minimum variance distortionless response (MVDR) beamforming. By accurately tracking direction-of-sound source arrival (DoA) information using audio-visual sensors, the covariance matrix is efficiently estimated by adopting a variable forgetting factor. The variable forgetting factor is determined by considering signal-to-interference ratio (SIR). Experimental results verify that the performance of the proposed method is superior to that of the conventional one in terms of interference/noise reduction and speech distortion.

Performance Improvement of the Smart Antenna Placed in Wi-Fi Access Point (와이파이AP 용 FFT 전단 스마트안테나의 성능 개선)

  • Hong, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2437-2442
    • /
    • 2013
  • OFDM Wi-Fi AP is susceptible to the co-channel interference. As a countermeasure, the insertion of a smart has been addressed. Despite of the guaranteed efficiency, the complexity of the post-FFT algorithm often keeps itself from being selected as the countermeasure. Instead, simply constructed pre-FFT smart antenna of which the algorithm is based on the received signal covariance matrix is commonly used and the mathematical modeling of it has been deployed. Computer simulations evaluating the improved BER characteristics of the proposed pre-FFT using the covariance matrix of channel estimator output have been carried out. It has been demonstrated that channel matrix output based smart antenna is superior to that using received signal covariance matrix.

The Block Decorrelation Method for Integer Ambiguity Resolution of GPS Carrier Phase Measurements (GPS 반송파 위상관측의 미지정수해를 위한 블록 비상관화 방법)

  • Tran, Binh Quoc;Lim, Sam-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.78-86
    • /
    • 2002
  • The GPS carrier phase measurements include integer ambiguities and the decorrelation process on the variance-covariance matrix is necessary to resolve these ambiguities efficiently. In this paper, we introduce a new method for the ambiguity de-correlation. This method divides the variance-covariance matrix into 4 smaller blocks and decorrelates them separately. The decorrelation of each block is processed recursively so that the result of the previous step is not affected by the next step. A couple of numerical examples chosen in random show that this method is better than or comparable to other decorrelation methods, however, the speed of this is relatively faster because the computations are performed on small blocks of the variance-covariance matrix.

Additional degree of freedom in phased-MIMO radar signal design using space-time codes

  • Vahdani, Roholah;Bizaki, Hossein Khaleghi;Joshaghani, Mohsen Fallah
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.640-649
    • /
    • 2021
  • In this paper, an additional degree of freedom in phased multi-input multi-output (phased-MIMO) radar with any arbitrary desired covariance matrix is proposed using space-time codes. By using the proposed method, any desired transmit covariance matrix in MIMO radar (phased-MIMO radars) can be realized by employing fully correlated base waveforms such as phased-array radars and simply extending them to different time slots with predesigned phases and amplitudes. In the proposed method, the transmit covariance matrix depends on the base waveform and space-time codes. For simplicity, a base waveform can be selected arbitrarily (ie, all base waveforms can be fully correlated, similar to phased-array radars). Therefore, any desired covariance matrix can be achieved by using a very simple phased-array structure and space-time code in the transmitter. The main advantage of the proposed scheme is that it does not require diverse uncorrelated waveforms. This considerably reduces transmitter hardware and software complexity and cost. One the receiver side, multiple signals can be analyzed jointly in the time and space domains to improve the signal-to-interference-plus-noise ratio.

A Fast Moving Object Tracking Method by the Combination of Covariance Matrix and Kalman Filter Algorithm (공분산 행렬과 칼만 필터를 결합한 고속 이동 물체 추적 방법)

  • Lee, Geum-boon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1477-1484
    • /
    • 2015
  • This paper proposes a robust method for object tracking based on Kalman filters algorithm and covariance matrix. As a feature of the object to be tracked, covariance matrix ensures the continuity of the moving target tracking in the image frames because the covariance is addressed spatial and statistical properties as well as the correlation properties of the features, despite the changes of the form and shape of the target. However, if object moves faster than operation time, real time tracking is difficult. In order to solve the problem, Kalman filters are used to estimate the area of the moving object and covariance matrices as a feature vector are compared with candidate regions within the estimated Kalman window. The results show that the tracking rate of 96.3% achieved using the proposed method.