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Abstract

A control chart is very useful in monitoring various production process. There are
many situations in which the simultaneous control of two or more related quality vari-
ables is necessary. We construct bivariate Shewhart control charts based on the trace of
the product of the estimated variance-covariance matrix and the inverse of the in-control
matrix and investigate the properties of bivariate Shewart control charts with VSI pro-
cedure for monitoring covariance matrix in term of ATS (Average time to signal) and
ANSW (Average number of switch) and probability of switch, ASI (Average sampling
interval). Numerical results show that ATS is smaller than ARL. From examining the
properties of switching in changing covariances and variances in Σ, ANSW values show
that it does not switch frequently and does not matter to use VSI procedure.

Keywords: Average run length, average number of switches, average sampling interval,
average time to signal, switching property.

1. Introduction

The purpose of a control chart is to detect assignable causes of variation that occur in the
process. During the control process, we want to detect any departure from in-control state
and find this change as quickly as possible. For a good control chart, it can be aware of a
shift quickly in the process when the process is out-of-control state and generate few false
alarms when the process is in-control state.

There are many problems in the quality control that imply a vector of measurements of
several quality variables rather than a single quality variable. If the quality variables are
correlated, it has better sensitivity by using multivariate control charts.

For control charts, it takes samples from the process at fixed sampling interval (FSI).
FSI procedures are simple and very popular, but we can change time interval as a function
of what is observed from the process. Strategy of changing time interval is called variable
sampling interval (VSI). Under the VSI procedures, when there is an indication of the process
change, the time interval would be short.

VSI procedures were first investigated by Arnold (1970) and his works were extended by
Smeach and Jernigan (1977). Also Reynolds and Arnold (1989) developed general expressions
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such as ARL and ATS for VSI control charts. But VSI procedures have a disadvantage that
is frequent switching between different sampling intervals which requires more cost and effort
to administer the process than corresponding FSI procedures. Amin and Letsinger (1991)
studied switching behavior and run rules for switching between different sampling intervals.
Amin and Hemasinha (1993) developed expression for the ANSW and ATS for VSI X̄ -chart
for evaluating the switching behavior.

In this paper, we investigate the properties of bivariate Shewart charts with VSI procedure
for monitoring covariance matrix in term of ATS (Average Time to Signal) and ANSW
(Average number of Switch) and probability of switch, ASI (Average sampling interval).
In Section 2, we introduce notation, assumptions and properties of VSI procedures. And
we construct bivariate Shewhart control charts based on the trace of the product of the
estimated variance-covariance matrix and the inverse of the in-control matrix. In Section 3,
we simulate bivariate control charts with three types of sifts in the covariance matrix.

2. Description of control procedures

Suppose that the process of interest has p quality variables presented by the random
vector X ′ = (X1, X2, · · · , Xp) and we take a sequence of samples of size n at each sampling
occasion i (i = 1, 2, · · · ). It will be assumed that the successive observation vectors are
independent and have bivariate normal distribution with Np(µ,Σ) where the mean vector
µ = µ0 is known.

2.1. Evaluating sample statistic

Suppose that the process of interest has p quality variables whose distribution is bivariate
normal with mean vector µ and covariance matrix Σ where the mean vector µ = µ0 is known.
It will be convenient to let σ represent the vector of standard deviations of the variable. Let
µ0, Σ0 and σ0 be the in-control values of µ, Σ and σ. We will usually refer to Σ0 as target,
even though, in practice, some of the components of Σ0 may correspond to estimated values
rather than specified target value.

We take a sequence of random samples of size n ≥ p at each sampling point, where
the sampling points are d time units apart. Let Xkij be the jth observation for variable
i at sampling point k for k = 1, 2, · · · , i = 1, 2, · · · , p and j = 1, 2, · · · , n, and let the
corresponding standardized observation be

Zkij = (Xkij − µ0i)/σ0i

where µ0i is the ith component of µ0 and σ0i is the ith component of σ0. Also let

Zkj = (Zk1j , Zk2j , · · · , Zkpj)
′
, j = 1, 2, · · · , n

be the vector of standardized observations for observation vector j at sampling point k.
Let ΣZ be the covariance matrix of Zkj , and let ΣZ0 be the in-control value of ΣZ . The
in-control distribution of Zkij is standard normal, so ΣZ0 is also the in-control correlation
matrix of the unstandardized observations. When n ≥ p, some control statistics used for
monitoring Σ are functions of the sample estimates Σ̂Z . At sampling point k, let Σ̂Zk be the
maximum likelihood estimator of ΣZ , where the (i, i

′
) element of Σ̂Zk is

∑n
j=1 ZkijZki′ j/n.
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2.2. Properties of VSI procedures

The basic idea of VSI control charts is that if there is some indication of a process change,
the time interval would be short and it would be long if not. For VSI charts, the sampling
intervals are random variable and the sampling interval depends on the past sample infor-
mations of X1, X2, · · · , Xi. Reynolds (1989) investigated the theoretical aspects of a VSI
two-sided control charts. Reynolds and Arnold (1989) investigated the theoretical aspects of
a VSI one-sided Shewhart control charts. Reynolds (1995) evaluated properties of variable
sampling interval control charts. Chang and Heo (2012) investgated switching properties of
CUSUM charts for controlling mean vector. Reynolds and Stoumbos (2001) studied on mon-
itoring the process mean and variance using individual observations and variable sampling
intervals. Chang and Cho (2005) studied CUSUM charts for monitoring mean vector with
variable sampling intervals. Reynolds and Cho (2006), Reynolds and Cho (2011), Jeong and
Cho (2012) studied multivariate control charts for the mean vector or covariance matrix.

To implement two sampling interval control charts, there are two disjoint regions I1, I2that
divide the in-control region. Ii is the region in which the sampling interval di is used (i = 1, 2).
In this paper, we assume that the VSI chart starts at time 0 and the interval used before
the first sample, is a fixed constant, say d0. Then the ARL and ATS can be expressed as{

ARL = 1 + ψ1 + ψ2

ATS = d0 + d1ψ1 + d2ψ2

where ψi is the expected number of samples before the signal. Also ATS can be expressed
as ATS = d · ARL and d can be interpreted as the average sampling interval (ASI) of the
charts to signal. And ρ1 can be interpreted as the long-run proportion of sampling interval
that d1 is used where

d = d1ρ1 + d2(1− ρ1)

The VSI procedures are substantially more efficient than FSI procedures in the term of
ARL and ATS. But, the ARL and ATS do not show any switching information between
the different sampling intervals d1 and d2. Therefore, it is necessary to define the number of
switches (NSW) as the number of switches made from the start of the process until the chart
signals, and let average number of switches (ANSW) be the expected value of the NSW.
The ANSW can be obtained as follows

ANSW = NSW · P (switches)

And, the probability of switch is given by

P (switch) = P (d1) · P (d2|d1) + P (d2) · P (d1|d2)

where p(di) is the probability of using sampling interval di, and p(di|dj) is the conditional
probability of using sampling interval di in the current sample given that the sampling
interval dj (di 6= dj) was used in the previous sample.

By Amin and Lestinger (1991), the number of samples taken from the time the process
starts using the sampling interval di until a switch is made to sampling interval dj (i 6= j),
and let average number of samples until a switch (ANSSW) be the expected value of the
number of samples until a switch.
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2.3. Bivariate Shewhart control chart

Reynolds and Stoumbos (2004a, 2004b) suggested that Shewhart control charts are very
sensitive to the choice of the sample size. So, Shewhart control chart is one of the most
widely used control charts for monitoring the production process. A Shewhart control chart
can detect large changes in monitored parameter quickly. But Shewhart control chart is
relatively inefficient in detecting small shift in control parameter, because it uses only the
information in the current sample. We can obtain a sample statistic for monitoring covariance
matrix by using the statistic for testing

H0 : Σ = Σ0 vs H1 : Σ 6= Σ0.

The Shewhart-type control chart proposed by Hotelling (1947) for monitoring mean vector
µ (frequently called Hotelling’s T 2 chart) was originally developed for the case in which Σ0

is unknown. If Σ0 is assumed to be known, then this control chart is equivalent to a control
chart based on the statistic used with an upper control limit (UCL).

(Zk1, Zk2, · · ·Zkp)Σ−1ZO(Zk1, Zk2, · · ·Zkp)′

Hotelling(1947) proposed a control chart for monitoring Σ based on
n∑

j=1

(Zkij , Zk2j , · · · , Zkpj)Σ
−1
Z0(Zkij , Zk2j , · · · , Zkpj)

′ = ntr(Σ̂ZkΣ−1Z0) = Yk.

This control chart has both a lower control limit (LCL) and an UCL.
For the VSI Shewhart control chart based on Yk, suppose that the sampling interval;

d1 is used when Yk ∈ (gYk , hYk ],

d2 is used when Yk ∈ (0, gYk ],

where gYk ≤ hYk and d1 < d2.
The percentage point of Yk can be obtained from the chi-square distribution when the

process is in-control. If the process is in-control, the statistic Yk has a chi-squared distribution
with p degree of freedom. Hence, the design parameters gYk and hYk can be obtained to satisfy
a desired ARL and ATS.

3. Numerical result and concluding remarks

The ability of a control chart to detect any shifts in the production process is determined
by the length of time required to signal. Thus, a good control chart detects shifts as quickly
as possible at out-of-control state and produce few alarms at in-control state.

In evaluating the properties of the VSI procedure, we compare the performance of the VSI
to the same procedure using FSI procedure. Also, we will use process parameters based on
ATS and ARL.

In order to evaluate the performances and compare the proposed bivariate Shewhart con-
trol charts fairly, some kinds of standards for comparison are necessary. In our computa-
tion, each control chart has been set so that on-target ARL and ATS were approximately
equal to 800.0 and the sample size for each control chart was 2, 4 for p = 2. And we used
d0 = 0, d1 = 1.9, d2 = 0.1. The performance of the charts for monitoring the covariance
matrix depends on the value of Σ. The following types of shifts were considered
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(1) variances are changed and covariances are not changed,

(2) covariances are changed and variances are not changed,

(3) variances and covariances are simultaneously changed.

Tables 3.1-3.2 give the values of and ARL and ATS, ANSW, P (switch), ANSSW, ASI for
n = 2, 4 and p = 2 and three different in-control correlation coefficients ρ0 = 0.9, 0.5, 0.3
when covariances are changed and variance are not changed. Here the changed value con-
sidered in Tables 3.1-3.2 are those of decreased by 10%, 50%, 70% and 90% of ρ0 values,
respectively. As shown in Tables 3.1-3.2, the bivariate Shewharts control chart proposed
by Hotelling (1947) for monitoring the variance-covariance matrix are effective in detecting
changes of covariances in Σ.

Tables 3.3-3.4 give the values of ARL, ATS, ANSW, P (switch), ANSSW, ASI for n = 2, 4
and p = 2 when variances are changed and covariances are not changed, respectively. Here
the variances are changed from σ =

√
cσ0, for c =1.21, 1.44, 1.69, 4. As shown in Tables

3.3-3.4, the bivariate Shewharts control chart proposed by Hotelling (1947) for monitoring
the variance-covariance matrix are effective in detecting changes of variances in Σ.

For n = 2, 4 and p = 2, Tables 3.5-3.6 give ARL, ATS, ANSW, P (switch), ANSSW, ASI
in each cell when only 2 variances and covariances are simultaneously changed respectively.
Here the variances are changed from σ =

√
cσ0, for c=1.21, 1.44, 1.69, 4. And covariances

are also changed from ρ0 = 0.9 to ρ0 = 0.72, 0.54, ρ0 = 0.5 to ρ0 = 0.4, 0.3 and ρ0 = 0.3 to
ρ0 = 0.21, 0.8. As shown in Tables 3.5-3.6, the bivariate Shewharts control chart proposed
by Hotelling (1947) for monitoring the variance-covariance matrix are effective in detecting
simultaneously changes of variance and covariance in Σ.

Numerical results for various tables give ARL, ATS, ANSW, P (switch), ANSSW, ASI.
First, we realize that ATS is smaller than ARL. That means VSI control chart is faster than
FSI control chart for detecting variations in the production process. Second, we examine the
properties of switching in changing covariances and variances in Σ. ANSW values show that
it does not switch frequently and does not matter to use VSI procedure.

Table 3.1 ARL and ATS, ANSW, P (switch), ANSSW, ASI when covariances are changed and
variance are not changed (n=2, p=2)

FSI VSI

ARL ATS ANSW P(switch) ANSSW ASI

ρ0 = 0.9

ρ = 0.90 799.72 799.87 398.39 0.50 2.01 1.00

ρ = 0.81 57.32 41.93 24.75 0.43 2.32 0.72

ρ = 0.45 4.44 2.64 0.72 0.16 6.18 0.39

ρ = 0.27 3.12 1.96 0.35 0.11 9.04 0.34

ρ = 0.09 2.51 1.67 0.20 0.08 12.44 0.31

ρ0 = 0.5

ρ = 0.50 799.72 799.87 398.39 0.50 2.01 1.00

ρ = 0.45 599.65 581.00 298.02 0.50 2.01 0.97

ρ = 0.25 177.92 156.79 86.52 0.49 2.07 0.88

ρ = 0.15 109.20 92.91 51.69 0.47 2.11 0.84

ρ = 0.05 71.54 59.25 33.51 0.46 2.17 0.82

ρ0 = 0.3

ρ = 0.30 799.72 799.87 398.39 0.50 2.01 1.00

ρ = 0.21 596.15 579.30 296.37 0.50 2.01 0.97

ρ = 0.15 463.89 444.83 230.18 0.50 2.02 0.96

ρ = 0.09 360.18 341.84 178.13 0.50 2.02 0.95

ρ = 0.03 280.52 262.47 138.21 0.49 2.03 0.94
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Table 3.2 ARL and ATS, ANSW, P (switch), ANSSW, ASI when covariances are changed and
variance are not changed (n=4, p=2)

FSI VSI

ARL ATS ANSW P(switch) ANSSW ASI

ρ0 = 0.9

ρ = 0.90 799.72 799.87 398.39 0.50 2.01 1.00

ρ = 0.81 36.11 22.21 13.39 0.37 2.70 0.59

ρ = 0.45 2.54 1.48 0.14 0.06 18.07 0.23

ρ = 0.27 1.86 1.25 0.05 0.03 38.23 0.19

ρ = 0.09 1.57 1.16 0.02 0.01 72.52 0.16

ρ0 = 0.5

ρ = 0.50 799.72 799.87 398.39 0.50 2.01 1.00

ρ = 0.45 551.93 527.57 273.81 0.50 2.02 0.95

ρ = 0.25 141.12 114.59 65.76 0.47 2.13 0.81

ρ = 0.15 80.35 61.81 36.16 0.45 2.22 0.76

ρ = 0.05 50.69 37.11 21.70 0.43 2.34 0.71

ρ0 = 0.3

ρ = 0.30 799.72 799.87 398.39 0.50 2.01 1.00

ρ = 0.21 595.15 580.30 295.88 0.50 2.01 0.50

ρ = 0.15 429.96 404.00 212.48 0.49 2.02 0.94

ρ = 0.09 327.54 301.15 160.99 0.49 2.04 0.92

ρ = 0.03 248.17 223.83 121.17 0.49 2.05 0.90

Table 3.3 ARL and ATS, ANSW, P (switch), ANSSW, ASI when variances are changed and
covariances are not changed (n=2, p=2)

FSI

ARL ATS ANSW P(switch) ANSSW ASI

ρ0 = 0.90

c = 1 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
253.97 229.31 124.10 0.49 2.05 0.90

198.31 164.53 94.25 0.48 2.10 0.83

c = 1.69
31.48 23.04 12.95 0.41 2.43 0.70

32.47 19.30 11.59 0.36 2.80 0.57

c = 4
2.64 1.77 0.24 0.09 11.14 0.33

2.93 1.54 0.17 0.06 16.83 0.22

ρ0 = 0.5

c = 1 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
338.68 308.25 166.24 0.49 2.04 0.50

198.31 164.53 94.25 0.48 2.10 0.51

c = 1.69
75.96 57.70 33.85 0.45 2.24 0.75

32.47 19.30 11.59 0.36 2.80 0.57

c = 4
6.10 3.48 1.24 0.20 4.91 0.42

2.93 1.54 0.17 0.06 16.83 0.22

ρ0 = 0.3

c = 1 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
344.89 314.08 169.38 0.49 2.04 0.91

198.31 164.53 94.25 0.48 2.10 0.83

c = 1.69
81.14 61.80 36.32 0.45 2.23 0.75

32.47 19.30 11.59 0.36 2.80 0.58

c = 4
6.73 3.79 1.44 0.21 4.68 0.43

2.93 1.54 0.17 0.06 16.83 0.22

Table 3.4 ARL and ATS, ANSW, P (switch), ANSSW, ASI when variances are changed and
covariances are not changed (n=4, p=2)

FSI VSI

ARL ATS ANSW P (switch) ANSSW ASI

ρ0 =0.90

c = 1 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
212.99 181.56 102.22 0.48 2.08 0.85

145.16 109.41 65.74 0.45 2.21 0.75

c = 1.69
20.04 12.12 6.78 0.34 2.95 0.56

17.56 8.16 4.44 0.25 3.96 0.41

c = 4
1.64 1.19 0.03 0.02 55.42 0.18

1.66 1.11 0.01 0.01 130.33 0.13

ρ0 = 0.5

c = 1 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
290.27 251.67 140.47 0.48 2.06 0.51

145.16 109.41 65.74 0.45 2.20 0.53

c = 1.69
49.94 32.51 19.86 0.40 2.51 0.63

17.56 8.16 4.44 0.25 3.96 0.41

c = 4
3.37 1.77 0.28 0.08 11.95 0.26

1.66 1.11 0.01 0.01 130.33 0.13

ρ0 = 0.3

c = 1 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
384.18 345.54 188.18 0.49 2.04 0.90

145.16 109.41 65.74 0.45 2.21 0.75

c = 1.69
54.21 35.49 21.72 0.40 2.50 0.64

15.64 7.10 3.73 0.24 0.00 0.00

c = 4
3.71 1.88 0.34 0.09 10.75 0.26

1.66 1.11 0.01 0.01 130.33 0.13
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Table 3.5 ARL and ATS, ANSW, P (switch), ANSSW, ASI when variances and
covariances are changed (n=2, p=2)

FSI
ARL ATS ANSW P(switch) ANSSW ASI

ρ0 =0.90
c = 1 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
ρ =0.72

11.85 6.92 3.41 0.29 3.47 0.51
9.64 5.34 2.43 0.25 3.97 0.46

ρ =0.54
4.82 2.78 0.81 0.17 5.94 0.39
4.18 2.39 0.59 0.14 7.05 0.36

c = 1.69
ρ =0.72

6.21 3.46 1.24 0.20 5.02 0.41
4.55 2.38 0.61 0.13 7.45 0.32

ρ =0.54
3.41 2.01 0.39 0.11 8.84 0.32
2.61 1.56 0.17 0.06 15.43 0.25

c = 4
ρ =0.72

1.98 1.36 0.08 0.04 24.03 0.23
1.60 1.14 0.02 0.01 77.99 0.15

ρ =0.54
1.70 1.23 0.04 0.02 41.68 0.20
1.37 1.08 0.01 0.01 157.9 0.13

ρ0 = 0.5
c = 1 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
ρ =0.4

11.85 6.92 3.41 0.29 3.47 0.51
9.64 5.34 2.43 0.25 3.97 0.46

ρ =0.3
4.82 2.78 0.81 0.17 5.94 0.39
4.18 2.39 0.59 0.14 7.05 0.36

c = 1.69
ρ =0.4

6.21 3.46 1.24 0.20 5.02 0.41
4.55 2.38 0.61 0.13 7.45 0.32

ρ =0.3
3.41 2.01 0.39 0.11 8.84 0.32
2.61 1.56 0.17 0.06 15.43 0.25

c = 4
ρ =0.4

1.98 1.36 0.08 0.04 24.03 0.23
1.60 1.14 0.02 0.01 77.99 0.15

ρ =0.3
1.70 1.23 0.04 0.02 41.68 0.20
1.37 1.08 0.01 0.01 157.90 0.13

ρ0 = 0.3
c = 1 799.72 799.87 398.39 0.50 2.00 0.50

c = 1.21
ρ =0.21

269.65 239.22 131.28 0.49 2.05 0.88
158.71 128.21 74.38 0.47 2.13 0.80

ρ =0.18
246.03 216.57 119.37 0.49 2.06 0.88
158.79 128.21 74.38 0.47 2.13 0.52

c = 1.69
ρ =0.21

69.67 51.75 30.57 0.44 2.28 0.73
28.02 16.33 9.67 0.35 2.90 0.55

ρ =0.18
65.43 48.26 28.52 0.44 2.29 0.72
26.77 15.51 9.13 0.34 2.93 0.55

c = 4
ρ =0.21

6.45 3.60 1.33 0.21 4.86 0.42
2.80 1.50 0.15 0.05 18.30 0.21

ρ =0.18
6.36 3.55 1.29 0.20 4.92 0.42
2.77 1.49 0.15 0.05 18.59 0.21

Table 3.6 ARL and ATS, ANSW, P (switch), ANSSW, ASI when variances and
covariances are changed (n=4, p=2)

FSI
ARL ATS ANSW P(switch) ANSSW ASI

ρ0 =0.90
c = 1.00 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
ρ =0.72

6.59 3.15 1.09 0.17 6.03 0.34
5.20 2.42 0.65 0.13 8.00 0.29

ρ =0.54
2.72 1.52 0.16 0.06 16.83 0.23
2.37 1.37 0.10 0.04 23.82 0.20

c = 1.69
ρ =0.72

3.43 1.76 0.28 0.08 12.40 0.25
2.51 1.36 0.09 0.04 26.47 0.18

ρ =0.54
1.96 1.25 0.05 0.03 37.50 0.18
1.58 1.12 0.02 0.01 99.19 0.14

c = 4
ρ =0.72

1.32 1.07 0.01 0.01 196.44 0.13
1.14 1.02 0.00 0.00 4275.80 0.11

ρ =0.54
1.19 1.04 0.00 0.00 534.59 0.12
1.07 1.01 0.00 0.00 20660.0 0.10

ρ0 = 0.5
c = 1 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
ρ =0.4

157.22 124.26 72.91 0.46 2.16 0.78
85.01 58.27 35.91 0.42 2.37 0.67

ρ =0.3
89.59 65.42 39.36 0.44 2.28 0.72
51.07 32.43 19.95 0.39 2.56 0.62

c = 1.69
ρ =0.4

34.57 20.65 12.48 0.36 2.77 0.57
12.79 5.64 2.74 0.21 4.67 0.37

ρ =0.3
24.27 13.65 7.95 0.33 3.05 0.53
9.61 4.18 1.77 0.18 5.44 0.34

c = 4
ρ =0.4

3.06 1.63 0.21 0.07 14.22 0.24
1.54 1.09 0.01 0.01 177.48 0.12

ρ =0.3
2.80 1.53 0.17 0.06 16.83 0.22
1.42 1.08 0.01 0.01 179.52 0.10

ρ0 = 0.3
c = 1 799.72 799.87 398.39 0.50 2.01 1.00

c = 1.21
ρ =0.21

221.60 184.45 105.58 0.48 2.10 0.83
112.47 81.25 49.47 0.44 2.27 0.71

ρ =0.18
198.33 163.10 93.91 0.47 2.11 0.82
102.78 73.35 44.78 0.44 2.30 0.70

c = 1.69
ρ =0.21

45.00 28.30 17.32 0.38 2.60 0.61
15.13 6.85 3.55 0.23 4.26 0.39

ρ =0.18
42.32 26.32 16.08 0.38 2.63 0.60
14.39 6.48 3.30 0.23 4.36 0.39

c = 4
ρ =0.21

3.53 1.80 0.30 0.09 11.64 0.25
1.60 1.10 0.01 0.01 146.11 0.12

ρ =0.18
3.46 1.77 0.29 0.08 11.96 0.25
1.59 1.10 0.01 0.01 151.22 0.12
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