Browse > Article
http://dx.doi.org/10.7465/jkdi.2016.27.3.815

Modeling of random effects covariance matrix in marginalized random effects models  

Lee, Keunbaik (Department of Statistics, Sungkyunkwan University)
Kim, Seolhwa (Department of Statistics, Sungkyunkwan University)
Publication Information
Journal of the Korean Data and Information Science Society / v.27, no.3, 2016 , pp. 815-825 More about this Journal
Abstract
Marginalized random effects models (MREMs) are often used to analyze longitudinal categorical data. The models permit direct estimation of marginal mean parameters and specify the serial correlation of longitudinal categorical data via the random effects. However, it is not easy to estimate the random effects covariance matrix in the MREMs because the matrix is high-dimensional and must be positive-definite. To solve these restrictions, we introduce two modeling approaches of the random effects covariance matrix: partial autocorrelation and the modified Cholesky decomposition. These proposed methods are illustrated with the real data from Korean genomic epidemiology study.
Keywords
Autocorrelation; modied Cholesky decomposition; heterogeneity; Quasi-Monte Carlo;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Agresti, A. (2002). Categorical Data Analysis, 2nd ed., Wiley and Sons, New York.
2 Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 125-134.
3 Choi, N. and Huh, J. (2014). A longitudinal study for child aggression with Korea welfare panel study data. Journal of the Korean Data & Information Science Society, 25, 1439-1447.   DOI
4 Daniels, M. J. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553-566.   DOI
5 Daniels, M. J. and Pourahmadi, M. (2009). Modelling covariance matrices via partial autocorrelations. Journal of Multivariate Analysis, 100, 2352-2363.   DOI
6 Daniels, M. J. and Zhao, Y. D. (2003). Modeling repeated count data subject to informative dropout. Statistics in Medicine, 22, 1631-1647.   DOI
7 Fitzmaurice, G. M. and Laird, N. M. (1993). A likelihood-based method for analysing longitudinal binary response. Biometrika, 80, 141-151.   DOI
8 Heagerty, P. J. (1999). Marginally speci ed logistic-normal models for longitudinal binary data. Biometrics, 55, 688-698.   DOI
9 Heagerty, P. J. (2002). Marginalized transition models and likelihood inference for longitudinal categorical data. Biometrics, 58, 342-351.   DOI
10 Heagerty, P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika, 88, 973-985.   DOI
11 Jeon, J. and Lee, K. (2014). Review and discussion of marginalized random effects models. Journal of the Korean Data & Information Science Society, 25, 1263-1272.   DOI
12 Joe, H. (2006). Generating random correlation matrices based on partial correlations. Journal of Multivariate Analysis, 97, 2177-2189.   DOI
13 Lee, K. and Daniels, M. J. (2008). Marginalized models for longitudinal ordinal data with application to quality of life studies. Statistics in Medicine, 27, 4359-4380.   DOI
14 Lee, K., Joo, Y., Yoo, J. K. and Lee, J. (2009). Marginalized random effects models for multivariate longitudinal binary data. Statistics in Medicine, 28, 1287-1300.
15 Lee, K. and Mercante, D. (2010). Longitudinal nominal data analysis using marginalized models. Computational Statistics and Data Analysis, 54, 208-218.   DOI
16 Lee, K., Kang, S., Liu, X. and Seo, D. (2011). Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models. Journal of Applied Statistics, 38, 1577-1590.   DOI
17 Lee, K., Lee, J., Hagan, J and Yoo, J. K. (2012). Modelling the random effects covariance matrix for generalized linear mixed models. Computational Statistics and Data Analysis, 56, 1545-1551.   DOI
18 Lee, K., Daniels, M. J. and Joo, Y. (2013). Flexible marginalized models for bivariate longitudinal ordinal data. Biostatistics, 14, 462-476.   DOI
19 Pan, J. and MacKenzie, G. (2003). On modelling mean-covariance structure in longitudinal studies. Biometrika, 90, 239-244.   DOI
20 Pan, J. and MacKenzie, G. (2007). Modelling conditional covariance in the linear mixed model. Statistical Modelling, 7, 49-71.   DOI
21 Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika, 86, 677-690.   DOI
22 Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika, 87, 425-435.   DOI
23 Wang, Y. and Daniels, M. J. (2013). Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances. Journal of Multivariate Analysis, 116, 130-140.   DOI
24 Wannamethee, S. G., Shaper, A. G., Lennon, L., Morris, R. W. (2006). Metabolic syndrome vs Framingham risk score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Journal of the American Medical Association, 295 819-821.   DOI