• Title/Summary/Keyword: Covariance Matrix

Search Result 489, Processing Time 0.027 seconds

Study of Spectral Factorization using Circulant Matrix Factorization to Design the FIR/IIR Lattice Filters (FIR/IIR Lattice 필터의 설계를 위한 Circulant Matrix Factorization을 사용한 Spectral Factorization에 관한 연구)

  • 김상태;박종원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.437-447
    • /
    • 2003
  • We propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used fur spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR Inter and for the case of the IIR filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).

Comparison of the covariance matrix for general linear model (일반 선형 모형에 대한 공분산 행렬의 비교)

  • Nam, Sang Ah;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.103-117
    • /
    • 2017
  • In longitudinal data analysis, the serial correlation of repeated outcomes must be taken into account using covariance matrix. Modeling of the covariance matrix is important to estimate the effect of covariates properly. However, It is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcome the restrictions, several Cholesky decomposition approaches for the covariance matrix were proposed: modified autoregressive (AR), moving average (MA), ARMA Cholesky decompositions. In this paper we review them and compare the performance of the approaches using simulation studies.

A new metchod for estimating array covariance matrix in circular array (원형어레이에서의 새로운 어레이 공분산 행렬 추정 방법)

  • 김영수;김영수;김창주;박한규;최상삼
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1534-1542
    • /
    • 1997
  • In this paper, we present a performance improvement method for the direction-of-arrival (DOA) estimation algorithm of the narrowband signals incident on a uniform circular array. It is very important to estimate the covariance matrix effectively because the performance of DOA algorithm mainly depends on the exactness of the sampel coveriance matrix which is computed from the received samples of signals. In case of uniform circular array with the even number sensors, the structure of the arrray has a useful geometrical property. Therefore we present the method which can estimate covariance matrix more effectively using this property. The simulation results are shown to demonstrate the superior perfodrmance obtained by the proposed covariance matrix estimation method relative to that of the conventional estimation method.

  • PDF

Dynamic linear mixed models with ARMA covariance matrix

  • Han, Eun-Jeong;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.575-585
    • /
    • 2016
  • Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (between-subject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods.

Validation on Residual Variation and Covariance Matrix of USSTRATCOM Two Line Element

  • Yim, Hyeon-Jeong;Chung, Dae-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.287-293
    • /
    • 2012
  • Satellite operating agencies are constantly monitoring conjunctions between satellites and space objects. Two line element (TLE) data, published by the Joint Space Operations Center of the United States Strategic Command, are available as raw data for a preliminary analysis of initial conjunction with a space object without any orbital information. However, there exist several sorts of uncertainties in the TLE data. In this paper, we suggest and analyze a method for estimating the uncertainties in the TLE data through mean, standard deviation of state vector residuals and covariance matrix. Also the estimation results are compared with actual results of orbit determination to validate the estimation method. Characteristics of the state vector residuals depending on the orbital elements are examined by applying the analysis to several satellites in various orbits. Main source of difference between the covariance matrices are also analyzed by comparing the matrices. Particularly, for the Korea Multi-Purpose Satellite-2, we examine the characteristics of the residual variation of state vector and covariance matrix depending on the orbital elements. It is confirmed that a realistic consideration on the space situation of space objects is possible using information from the analysis of mean, standard deviation of the state vector residuals of TLE and covariance matrix.

A statistical analysis on the selection of the optimal covariance matrix pattern for the cholesterol data (콜레스테롤 자료에 대한 적정 공분산행렬 형태 산출에 관한 통계적 분석)

  • Jo, Jin-Nam;Baik, Jai-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1263-1270
    • /
    • 2010
  • Sixty patients were divided into three groups. Each group of twenty persons had fed on different diet foods over 5 weeks. Cholesterol had been measured repeatedly five times at an interval of a week during 5 weeks. It resulted from mixed model analysis of repeated measurements data that homogeneous toeplitz covariance matrix pattern was selected as the optimal covariance pattern. The correlations between measurements of different times for the covariance matrix are somewhat highly correlated as 0.64-0.78. Based upon the homogeneous toeplitz covariance pattern model, the time effect was found to be highly significant, but the treatment effect and treatment-time interaction effect were found to be insignificant.

Multivariate EWMA Control Charts for the Variance-Covariance Matrix with Variable Sampling Intervals (가변추출간격상(假變抽出間格上)에서 분산(分散)-공분산(共分散) 행례(行例)에 대한 다변량(多變量) 기하이동평균(幾何移動平均) 처리원(處理圓))

  • Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.4
    • /
    • pp.31-44
    • /
    • 1993
  • Multivariate exponentially weighted moving average (EWMA) control charts for monitoring the variance-covariance matrix are investigated. A variable sampling interval (VSI) feature is considered in these charts. Multivariate EWMA control charts for monitoring the variance-covariance matrix are compared on the basis of their average time to signal (ATS) performances. The numerical results show that multivariate VSI EWMA control charts are more efficient than corrsponding multivariate fixed sampling interval (FSI) EWMA control charts.

  • PDF

On the Multivariate Poisson Distribution with Specific Covariance Matrix

  • Kim, Dae-Hak;Jeong, Heong-Chul;Jung, Byoung-Cheol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.161-171
    • /
    • 2006
  • In this paper, we consider the random number generation method for multivariate Poisson distribution with specific covariance matrix. Random number generating method for the multivariate Poisson distribution is considered into two part, by first solving the linear equation to determine the univariate Poisson parameter, then convoluting independent univariate Poisson variates with appropriate expectations. We propose a numerical algorithm to solve the linear equation given the specific covariance matrix.

  • PDF

Comparison study of modeling covariance matrix for multivariate longitudinal data (다변량 경시적 자료 분석을 위한 공분산 행렬의 모형화 비교 연구)

  • Kwak, Na Young;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.281-296
    • /
    • 2020
  • Repeated outcomes from the same subjects are referred to as longitudinal data. Analysis of the data requires different methods unlike cross-sectional data analysis. It is important to model the covariance matrix because the correlation between the repeated outcomes must be considered when estimating the effects of covariates on the mean response. However, the modeling of the covariance matrix is tricky because there are many parameters to be estimated, and the estimated covariance matrix should be positive definite. In this paper, we consider analysis of multivariate longitudinal data via two modeling methodologies for the covariance matrix for multivariate longitudinal data. Both methods describe serial correlations of multivariate longitudinal outcomes using a modified Cholesky decomposition. However, the two methods consider different decompositions to explain the correlation between simultaneous responses. The first method uses enhanced linear covariance models so that the covariance matrix satisfies a positive definiteness condition; in addition, and principal component analysis and maximization-minimization algorithm (MM algorithm) were used to estimate model parameters. The second method considers variance-correlation decomposition and hypersphere decomposition to model covariance matrix. Simulations are used to compare the performance of the two methodologies.

Multivariate CUSUM control charts for monitoring the covariance matrix

  • Choi, Hwa Young;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.539-548
    • /
    • 2016
  • This paper is a study on the multivariate CUSUM control charts using three different control statistics for monitoring covariance matrix. We get control limits and ARLs of the proposed multivariate CUSUM control charts using three different control statistics by using computer simulations. The performances of these proposed multivariate CUSUM control charts have been investigated by comparing ARLs. The purpose of control charts is to detect assignable causes of variation so that these causes can be found and eliminated from process, variability will be reduced and the process will be improved. We show that the charts based on three different control statistics are very effective in detecting shifts, especially shifts in covariances when the variables are highly correlated. When variables are highly correlated, our overall recommendation is to use the multivariate CUSUM control charts using trace for detecting changes in covariance matrix.