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Multivariate EWMA Control Charts
for the Variance-Covariance Matrix
with Variable Sampling Intervals

Gyo-Young Cho*

ABSTRACT

Multivariate exponentially weighted moving average (EWMA) control charts
for monitoring the variance-covariance matrix are investigated. A variable sampling
interval (VSI) feature is considered in these charts. Multivariate EWMA control
charts for monitoring the variance-covariance matrix are compared on the basis
of their average time to signal (ATS) performances. The numerical results show
that multivariate VST EWMA control charts are more efficient than corrsponding
multivariate fixed sampling interval (FSI) EWMA control charts.

1. Introduction

Control charts are used to monitor quality variables from a process to detect
changes in the parameters of the distribution of these variables. A control chart
is maintained by taking samples from a process and plotting the relevant statistic

computed from the samples in time order on the control chart.

When control charts are used to monitor production process the main objective

is to detect any change in the process that may affect the quality of the output of
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the process. The usual practice when monitoring a control chart 1s to take samples

from the process at fixed length sampling intervals.

Reynolds and Arnold (1989), Reynolds (1989), and Reynolds et al. (1988)
investigated the properties of control charts in which the sampling interval is varied
as a fuction of what is observed from the process. The basic idea of a variable
sampling interval (VSI) control chart is that after a sample is taken, the time interval
until the next sample should be short if there is some indication of a process change
and long if there is no indication of a process change. If the indication of a process
change is strong enough then the VSI chart signals in the same way as a fixed
sampling interval (FSI) chart.

Reynolds and Arnold (1989) and Reynolds (1989) showed that the optimal VSI
chart uses only the shortest possible interval and longest possible interval from a
range of possible sample intervals. A chart is said to be optimal if it minimizes the
time required to detect a shift in a process parameter subject to a given false alarm

rate and a given average sampling rate.

There are many situations in which the simultaneous control of two or more
quality characteristics is necessary. The original work in multivariate quality control
was introduced by Hotelling (1947). Alt (1984) and Jackson (1985) reviewed much
of the literature on the multivariate control charts. The multivariate control charts
using the VSI idea have been studied by Hui et al.(1980) and Chengalur-Smith et
al.(1993) but this work was only for the Shewhart control charts. We will be looking
at multivariate EWMA charts for monitoring the variance-covariance matrix with

variable sampling intervals.

Suppose that the process of interest has p quality characteristics represented
by the random vector X = (X1,X2,...,Xp),p = 2,3, ..., and X has a multivariate
normal distribution with mean vectors . ,i = 1,2, ..., and variance-covariance ma-
trix ©. Let the sample of n observations taken at the sampling point be represented
by np x 1 vector X; = (Xi1', Xy, Xyp'), where X', = (Xij1, Xij2, oy Xijn) is
the jt* observation vector among n observation vectors taken at the it* sampling
point. It will be assumed that the observation vectors within and between sam-

ples are independent. Even though most control charts make this assumption, one
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should note that this is perhaps not very realistic, because production processes are

inherently time dependent.

Suppose that the objective is to monitor X where the target value £y is known.
We will consider the case in which the primary objective is to detect changes in the
variances, not in the correlation coefficients. Several different control statistics for
¥ will be presented since different statistics can be used to describe variability. In
the univariate case, the S2-chart is used to control the variance under the normality
assumption. The S? -chart signals for large values of S? or equivalently for large
values of V; = (n—1)8;2/ao?, where §; = Y0, (Xij — X:)"/(n—1). One possible
multivariate version of V; is

Vi= Z (X, ‘X.‘)l o (X - X)),
i=1
where A; = 37, (X,; - X) (X ——X‘-)'. When ¥ = g, V; has a chi-squared
distribution with (n-1) p degrees of freedom. Hoteling (1947) proposed the use
of the Lawley-Hotelling statistic V; in monitoring the process variance-covariance
matrix. The distribution of V; was studied by Lawley (1938) and Hotelling (195.).

Hui (1980) studied the use of the sample generalized variance in monitoring the
process variance-covariance matrix using a statistic L; =| 4;/(n—1)|/|Zo |. It is
known that (n — 1)!/2(L; — 1) is asymptotically normal with mean 0 and variance
2p (Anderson (1958)). Another chart can be constructed by using the likelihood
ratio statistic for testing Hp : ¥ = X¢ vs. Hj : ¥ # Zo.

In general, if the process shifts from %o to I; then it is difficult to obtain the
distribution of V;. Thus, in order to evaluate the properties of the charts for X it is

necessary to carry out computer simulations.
2. Multivariate EWMA Charts for the Variance-Covariance Matrix

We propose a multivariate EWMA control chart based on the “accumulate-
combine approach ” that accumulates past sample information for each parameter
and then combine the separate accumulations into a univariate statistic. The mul-

tivariate control chart based on the accumulate-combine approach is more efficient
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in terms of ATS than the multivariate control chart based on “combine-accumulate
approach ” that combines the multivariate data into a univariate statistic and then
accumulate over past samples. Multivariate EWMA control charts based on the
accumulate-combine approach can be constructed by forming a univariate statistic
from vectors of EWMA’s.

In the univariate case, an EWMA control chart for 62 can be constructed by

using the statistic

n =5 2
Yi = (1= \)Yko1 + A (@) . (2.1)
i=1 0

By repeated substitution in (1), it can be shown that

k n = 2
Yi=(1-NY%+ > A1 -0)> (&_—_X_> : (2.2)

=1 J=1
k=1,2,--- and 0 <A <1

In the multivariate case, define vectors of EWMA’s
__Y_lc_ = (Ykl ’ Yk?, R} Ykp),, where

k n = 2
ARICEPVLTS SECEP Ut d 3] G IETCES T SR
i=1 j=1

k=12--,Y,=0, and 0 < N <1, I=1,2,---,p. A multivariate EWMA

chart for ¥ is based on the statistic
T2 = Yi'Sy, 'Yk - ' (2.4)

where Dy, is the variance-covariance matrix of Y3 which will be given in Theorem
1. The V;;tor Y} is one possible multivariate extension of Y in (2.2). In general,
it is difficult to obtain the distribution of Yx, but the asymptotic distribution will
be obtained for the case in which the process is in control. To simplify notations,

let
2

L (X — X '
Zu=3), (_ﬂ_a(;_) —(n—1), and Zi=(Zu,Zi,  Zp)s
i=1
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for | =1,2,---,p, i =1,2,---, then the multivariate EWMA vectors car. be

expressed as
Yi=(1- N + 2% . (2.5)

By repeated substitution in (2.5), it can be shown that

k
Y=Y M1-3)"2.

=1

It is easy to show that

N2
E(Zy|m=por,o1 =0q) =(n—1) [(%) - 1} , 1=12,--,p
Thus, under the assumption that yg = po and £ =X, the expected value of the

random vector Z;, denoted by p , is

b= =) (22 -1, (22 -1, (22 -1]'.

If ¥ =1, then p =0.

Theorem 1. The variance-covariance matrix of Y; when a process is in

control and Yo =0 is

A 2k _ 2
2_)‘[1-—(1—/\) ]zg, Sz =2(n - 1)R?,

Sy, =
where R? is used to denote the matrix whose (I,I')"* element is the 2" power of
{, l')th component of R which is the correlation matrix of X = (X3, Xs,..., Xp).

Proof. It is easy to show that from the fact Y; = Zle Al - A)k_igi )

Sy, = i Cov [/\(1 - A)”—‘g] - —2% [1 —(1- A)“] s

=1

When a process is in control, the mean vector and variance-covariance matrix of

- \2
Z; is defined as follows: recall that Z; +(n — 1) = Z]__ (&%) has
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a chi-squared distribution with (n-1) degrees of freedom. Thus E(Z;)=0 and
Var(Z;)=2(n - 1) for 1=1,2,---,p, 1=1,2,--.. For simplicity, let

Xiji — X Xijo — Xiw Xy — Xiw
UJ‘ — _l__;’ V; _ iy i. , and Wj’ _ i L
Jol aor aol

Then, they can be expressed that
(Uﬁ V]) ~ NZ(O’O?(n - 1)/na(n - 1)/n,p)

and
(Uj, Wj) ~ N3(0,0,(n —1)/n,(n - 1)/n,—p/(n — 1)).

Thus
CO'U(Z,'], Z.'p) =Cov [Z,'[ + (n - 1), Zir + (n - 1)]

Zn: sz, i V]Z]
Jj=1 j=1

=n Cov [Uf,Vf] +n(n —1)Cov [U;, W;].

= Cov

By using the moment generating fuction of the bivariate normal distribution, it can
be shown that
Cov[U;*,V;*] = 2[Cov(U;, V;)I',

and
Cov[U;?, W;?] = 2[Cou(U;, W;)]".

Hence

—1)2 -1 .
Cov[Zy, Ziv] = 2(n nl) P+ 2(n - )p2 =2(n — l)pz.

Therefore E(Z;)=0 and Tz = Cov(Z;) = 2(n — 1)R2.

The following Theorem 2 gives the asymptotic distribution of Y; given by

(2.5) when the process is in control.

Theorem 2. Let p-component vectors X;, X3, - be independently iden-
tically distributed according to Ny(g,X). Then {Ey_k -V Y, k2> 1} converges
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in distribution to a multivariate normal distribution with mean vector 0 and

variance-covariance matrix I, as k — c0,A — 0 and kX — 1.
Proof. Recall that Y, is
Y= im -0z

Fork > 1, let -

Ak =} Th, Cov (M1 -2,

By, is the symmetric, positive definite matrix satisfying By? = Az !,

7k = the smallest eigenvalue of Ay.
By the corollaries 18.2 and 18.3 of Bhattacharya and Rao (1975), if

k
Ok(N) = k™2 3T B BiA(1 ~ M) Z|” — 0
i=1
as k—oo, A—0, and kX—>1,
then
1
v
The inequality given (17.63) of Bhattacharya and Rao (1975) is
IBZill < ™ 2)Zill,  1<i<k

k
Be Y M1-0"2 -5 Ny(0,1), as k— o0, A— 0, kA — 1.
=1

and this gives
IBeZil® < ™ 2Z°,  1<i<k.
Thus
k o
Or(A) = k723 " E|[BiA(1 - Nz

i=1

k
= k3208 Y (1= AP BBz,

=1

k
S KN (1 - APy R 7 (26)

=1
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Now
1
k

A

1
Ar = PYCES))

Sy, = 1-a-»"*]=z.

Let v be the smallest eigenvalue of £z. Then the smallest eigenvalue of Ay can be

expressed as

o

Thus, the right hand side of the inequality (2.6) is less than or equal to

[{%__(2 i v [1 —(1- /\)2k] } 7] -3/2 )8 zk:(l AP E|ZP @27)

1=1

By using the inequality given by Chung (1974, p.48), it is easy to show that

p 3/2 »
Bz’ = E (Z Zf) < VY EIZaf =p*lE|Zaf', 1=1,2,---,p.

Let m3 = E|Zy|* < 00, 1 =1,2,---,p. Thus, the quantity (2.7) is less than or
equal to

P32 A1-1=2%T 2-x 717
S F oy [1-(1—A)2k] —0

as k—oo, A—>0, and kA—1.

Therefore

k
1 —i _ d
ﬁBkZAu—A)* Zi =Sy, i, -5 Ny(0, 1),

=1

as k—o00, A—0, and kA—>1.

Corollary. {Tk2, k>1} converges in distribution to a chi-squared distri-

bution with p degrees of freedom as k¥ — 00,A —= 0, and kA — 1.
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Proof. Recall that the control statistic T%> is
T’ =Y'Sy, 'Y,
which can be expressed as
Ti* = (S 7V Y)N(Ey TP Ye).
By Theorem 2 and the corollary of Serfling (1980, p.25),
Ti? = Yi'Sy, Ve -5 x2(p), ask — 00,A = 0,kA — 1.

The multivariate EWMA chart signals that the process is out-of-control whenever
Ti2 > h. For the VSI multivariate EWMA chart, suppose that

dy is used when T}? € (g, h),
d, is used when Y32 € (0, ¢]. (8)

The ATS performance of the multivariate EWMA chart based on accumulate-

combine approach can not be modeled as a simple stationary Markov chain as
described in Brook and Evans (1972). A simulation to obtain the ATS values and

parameters b and ¢ was used.
3. Numerical Results

‘The following control procedures will be compared on the basis of their ATS

performances.
1. FSI multivariate EWMA chart.

2. VSI multivariate EWMA chart.

The performances of the charts for monitoring a variance-covariance matrix depend
on the value X. It is not possible to investigate all of the different ways in which

3 could be changed. Thus the following types of shifts are considered:

(V1) all variances and covariances are changed by a constant factor, i.e., X1 = c¢X,.
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(V2) one variance is increased to clog;; and the other variances are remained on

target.
(V3) approximately half of the variances and covariances are changed by a constant
and there are no shifts in the rest.

When comparing FSI and VSI charts, some kinds of standard for comparison is
necessary. The charts are matched for ANSS and ATS when the process is in
control. This enables the performance to be evaluated when the process has shifted
away from its target value. For convenience the unit of time was chosen as the
sampling interval of the FSI chart so that d = 1. When d = 1, the ANSS and ATS
of the FSI chart have the same value. By using the relationships between FSI and
VSI sampling intervals, two sampling intervals d; and d; for the VSI charts can be
chosen so that two charts have the same ATS when the process is in control. In
our computation, the ANSS in control was fixed to be 200 and all of the VSI charts
used d;=0.1 and d; =1.9.

The sample size used for each sample observations was five. It is assumed that
the correlation coefficient p is the same for all variables. Table 1 gives the values
of h and g for p =2-5 and X when the ATS at ¥ = X, is approximately 200.
ATS values and parameters h and g were calculated by using 10,000 simulations.
For p=2 and three different correlation coefficients p =0.0, 0.5, 0.8, Tables 2-4 give
FSI and VSI ATS values. As shown in Tables 2-4, smaller values of A are more
effective in detecting all shifts in ¥ for p=2. For p=5, p = 0.5, and A = 0.05,
Table 5 gives FSI and VSI ATS values. The results in Tables 2-5 show that VSI
multivariate EWMA chart based on accumulate-combine approach is better than

FSI multivariate EWMA chart based on combine-accumulate approach.
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Table 1. Values of h and g for Various Values of A and p
when the ATS at ¥ = ¥y is approximately 200

pl p| A=03 A=01 A=0.05
2| 00| 140154 94105  7.7675
1.2730  1.2790  1.2390
2| 05| 14.3502  9.5307  7.8020
1.2560  1.2710  1.2210

2| 08| 14.3502  9.5307  7.8020 |
1.2560  1.2710 12210
3| 05 10.0917
2.1340
4| 05 12.1742
3.0670
5| 05 14.0632
3.9810

The top number in each cell is h

The bottom number in each cell is g

Table 2. ATS Values for Matched Multuvariate FSI and VSI EWMA Charts
for the Variance-Covariance Matrix (p = 2, p = 0.0)

A = 0.05 A=0.10 A=0.30

shift FSI VSI FSI VSI FSI VSl
¢ = 1.00 199.5 200.0 199.6 199.9  199.5 200.0
¢ =1.21 21.7 16.5 244 19.2 344 294
c=1.69 41 29 46 3.1 60 3.6
c = 2.56 21 1.6 22 1.7 2.7 18
cl =121 384 31.5 429 36.7 60.7 55.7
cl = 1.69 77 54 85 5.9 11.7 8.0
cl = 2.56 29 22 32 23 39 25
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Table 3. ATS Values for Matched Multivariate FSI and VSI EWMA Charts

Gyo-Young Cho

for the Variance-Covariance Matrix (p = 2, p = 0.5)

A =0.05 A=0.10 A=0.30

shift FSI VSI FSI VSI FSI VSI
c=1.00 200.6 199.3  200.5 200.0  200.2 199.8
c=121 249 194 27.8 225 38.6 34.5
c=1.69 4.7 33 53 3.5 6.9 43
c = 2.56 19 15 21 16 24 1.6
cl =121 374 29.8 42.5 35.7 61.7 55.7
cl =1.69 74 5.1 82 5.5 114 7.6
cl = 2.56 28 21 31 22 3.8 24

Table 4. ATS Values for Matched Multivariate FSI and VSI EWMA Charts

for the Variance-Covariance Matrix (p = 2, p = 0.8)

A =0.05 A=0.10 A=0.30

shift FSI VSI FSI VSI FSI VSI
c¢=1.00 200.1 198.7  201.7 201.2  200.8 200.7
c=121 28.5 23.2 31.5 264 42.0 36.9
c=1.69 54 3.8 6.0 4.1 79 5.1
c = 2.56 21 1.7 23 1.7 2.7 18
cl =121 27.9 20.2 33.0 25.0 52.0 43.9
cl =1.69 54 3.6 6.1 3.8 83 4.8
cl = 2.56 22 1.7 24 1.7 28 1.8
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Table 5. ATS Values for Matched Multivariate FSI and VSI EWMA Charts
for the Variance-Covariance Matrix (p = 5,p = 0.5, A = 0.05)

shift FSI VSI shift FSI VSI

c=100| 2004 1994 | c1-3=121| 227 15.6
c=121 18.6 130 | c1-3=144} 75 4.8
¢ = 1.69 3.2 22| c1-3=169| 4.1 2.7
¢ = 2.56 14 1.2 | ¢1-3=196} 27 1.9
cl =121 46.3 35.7 | c1-3=225{ 2.0 1.5
cl =1.69 8.5 571 ¢1-3=256| 1.7 -~ 13
cl = 2.56 3.2 24
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