• Title/Summary/Keyword: Cournot Equilibrium

Search Result 40, Processing Time 0.018 seconds

Approach for Evaluating the Nash Equilibrium of Cournot Game Model for N-Gencos by Using Payoff Matrix in Wholesale Electricity Market (도매전력시장에서 N-발전사업자의 보수행렬을 이용한 꾸르노 모델의 내쉬균형점 도출을 위한 방법론)

  • Park Jong-Bae;Lim Jung-Youl;Lee Ki-Song;Shin Joong-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.97-106
    • /
    • 2005
  • This paper presents a method for evaluating the nash equilibrium of the Cournot model for N-Gencos in wholesale electricity market. In wholesale electricity market, the strategies of N-Gencos can be applied to the game model under the conditions, which the Gencos determine their strategies to maximize their benefit. Generally, the Lemke algorithm has known as the approach to evaluate the mixed nash equilibrium in the only two-player game model. In this paper, we have developed the necessary condition for obtaining the mixed nash equilibrium of N-player by using the Lemke algorithms. However, it is difficult to find the mixed nash equilibrium of two more players by using the analytic method since those have the nonlinear characteristics. To overcome the above problem, we have formulated the object function satisfied with the proposed necessary conditions for N-player nash equilibrium and applied the modified particle swarm optimization (PSO) method to obtain the equilibrium for N-player. To present the effectiveness the proposed necessary condition and the evaluation approach, this paper has shown the results of equilibrium of sample system and the cournot game model for 3-players.

The Method for Estimating the Inverse Demand Curve of Cournot Model in Electricity Market (전력시장 적용을 위한 쿠르노 모델에서의 역수요함수 추정 방법 제안)

  • Kang Dong-Joo;Hur Jin;Kim Tae-Hyun;Moon Young-Hwan;Lee Keun-Dae;Chung Koo-Hyung;Kim Balho H.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.79-87
    • /
    • 2005
  • At present Cournot model is one of the most commonly used theories to analyze the gaming situation in oligopoly market. But there exist several problems to apply this model to electricity market. The representative one is to obtain the inverse demand curve able to be induced from the relationship between market price and demand response. In Cournot model, each player offers their generation quantity to accomplish maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears on the long-term basis through the statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium.

Analysis of Cournot Model of Electricity Market with Demand Response (수요반응자원이 포함된 전력시장의 쿠르노 경쟁모형 해석)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.16-22
    • /
    • 2017
  • In order to reduce costs of electricity energy at periods of peak demand, there has been an exponential interest in Demand Response (DR). This paper discusses the effect on the participants' behavior in response to DR. Under the assumption of perfect competition, the equilibrium point of the electricity market with DR is derived by modeling a DR curve, which is suitable for microeconomic analysis. Cournot model is used to analyze the electricity market of imperfect competition that includes strategic behavior of the generation companies. Strategic behavior with DR makes it harder to compute equilibrium point due to the non-differential function of payoff distribution. This paper presents a solution method for achieving the equilibrium point using the best response function of the strategic players. The effect of DR on the electricity market is illustrated using a test system.

A Proposal for Inverse Demand Curve Production of Cournot Model for Application to the Electricity Market

  • Kang Dong-Joo;Oh Tae-Kyoo;Chung Koohyung;Kim Balho H.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.403-411
    • /
    • 2005
  • At present, the Cournot model is one of the most commonly used theories to analyze the gaming situation in an oligopoly type market. However, several problems exist in the successful application of this model to the electricity market. The representative one is obtaining the inverse demand curve able to be induced from the relationship between market price and demand response. In the Cournot model, each player offers their generation quantity to obtain maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect the real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears over the long-term through statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as the trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium.

Strategy Equilibrium in Stackelberg Model with Transmission Congestion in Electricity Market

  • Lee, Kwang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.90-97
    • /
    • 2014
  • Nash Cournot Equilibrium (NCE) has been widely used in a competitive electricity market to analyze generation firms' strategic production quantities. Congestion on a transmission network may lead to a mixed strategy NCE. Mixed strategy is complicated to understand, difficult to compute, and hard to implement in practical market. However, Stackelberg model based equilibrium does not have any mixed strategy, even under congestion in a transmission line. A guide to understanding mixed strategy equilibrium is given by analyzing a cycling phenomenon in the players' best choices. This paper connects the concept of leader-follower in Stackelberg model with relations between generation firms on both sides of the congested line. From the viewpoint of social welfare, the surplus analysis is presented for comparison between the NCE and the Stackelberg equilibrium (SE).

A Linearized Transmission Model Based Market Equilibrium In Locational Pricing Environments

  • Joung, Man-Ho;Kim, Jin-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.494-499
    • /
    • 2007
  • In this paper, we have investigated how transmission network constraints can be modeled in an electricity market equilibrium model. Under Cournot competition assumption, a game model is set up considering transmission line capacity constraints. Based on locational marginal pricing principle, market clearing is formulated as a total consumers# benefit maximization problem, and then converted to a conventional optimal power flow (OPF) formulation with a linearized transmission model. Using market clearing formulation, best response analysis is formulated and, finally, Nash equilibrium is formulated. In order for illustration, a numerical study for a four node system with two generating firms and two loads are presented.

Modeling of Electricity Market based on Cournot Theory in consideration of Emissions Trading (배출권 거래를 고려한 쿠르노 모형 기반의 전력시장 모델링 기법에 관한 연구)

  • Lee, Kwang-Ho;Kim, Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.379-384
    • /
    • 2014
  • This paper proposes a Cournot model that can be used to analyze the strategic behaviors of generation companies which try to maximize their profits in an imperfectly competitive electricity and carbon markets. The proposed model consists of two parts. First, the strategic behaviors of generation companies are modeled based on the Cournot theory. Second, the market operation is modeled based on the assumption that the market operator tries to maximize the total social welfare in consideration of environmental welfare. To find the Nash equilibrium of the proposed model, the two-level optimization technique is used. The proposed method has been applied to an illustrative example of oligopolistic markets. We found that the proposed method has strong potential to analyze the influence of the strategic biddings of the generation companies and the impact of renewable generator on markets where the competitiveness of the markets is not fully developed.

Suppression of Strategic Capacity Withholding by Capacity Payment in a Competitive Generation Market (경쟁적 전력시장에서 용량요금에 의한 전략적 용량철회 억제)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1199-1204
    • /
    • 2007
  • In a cost based pool market, the generation capacity can be used as strategic bids by generation companies (Gencos) with the cost functions open to the market. Competition using strategic capacities is modeled by Cournot and Perfect Competiton (PC) model, and transformed into two by two payoff matrix game with Gencos' decision variables of Cournot and PC model. The payoff matrices vary when capacity payments are given to Gencos in accordance with their capacity bids. Nash Equilibrium (NE) in the matrices also moves with capacity price changes. In order to maximize social welfare of the market, NE should locate in a certain position of the payoff matrices, which corresponds to a PC NE. A concept of a critical capacity price is proposed and calculated in this paper that is defined as a minimum capacity price leading to PC NE. The critical capacity price is verified to work as a tool for suppressing a strategic capacity withholding in simulations of a test system.

A Proposed Method for Estimating Demand function of Cournot Model in Electricity Market (전력시장에서의 쿠르노 수요함수 추정)

  • Kang, Dong-Joo;Hur, Jin;Oh, Tae-Kyoo;Chung, Koo-Hyung;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.168-170
    • /
    • 2005
  • At present Cournot model is one of the most commonly used theories to analyze the gaming situation in oligopoly market. But there exist several problems to apply this model to electricity market. The representative one is to obtain the inverse demand curve able to be induced from the relationship between market price and demand response. In Cournot model, each player offers their generation quantity to accomplish maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears on the long-term basis through the statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium

  • PDF

Leader-Follower Model Analysis on Mixed Strategy Nash Equilibrium of Electricity Market with Transmission Congestion (송전선 혼잡시의 복합전략 내쉬균형에 대한 선도-추종자 모형 해석)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.187-193
    • /
    • 2012
  • Nash Equilibrium (NE) is as useful tool for investigating a participant's strategic generation quantity in a competitive electricity market. Cournot model may give a mixed strategy NE instead of a pure strategy when transmission constraints are considered. A mixed strategy is difficult to compute, complicated to understand conceptually, and hard to implement in an electricity market practically. This paper presents that a mixed strategy does not appear in Stackelberg leader-follower model even under a transmission congestion. A solution method is proposed for the leader-follower model under a nondifferentiable space of a strategy variable. Based on the pure strategy NE with a transmission line congested, the merit of leader-follower model is shown from a social welfare point of view.