• Title/Summary/Keyword: Coupling noise

Search Result 564, Processing Time 0.024 seconds

Analysis of Coupling Between Digital Noise and Portable Smart Terminal Antenna According to Antenna Types (휴대용 스마트 단말기 안테나 타입에 따른 디지털 노이즈와 안테나의 결합 분석)

  • Kim, Joonchul
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.873-877
    • /
    • 2019
  • In this paper, we analyze the degree of digital noise coupling for Inverted F Antenna (IFA) and Loop Antenna, which are representative types of portable terminal antenna, using characteristic mode. Firstly, the degree of coupling according to the direction of digital signal lines and characteristic mode current of the printed circuit board (PCB) including the antenna is compared and analyzed, and based on this result, the coupling between WiFi antenna and the front camera noise is analyzed. For analysis, the digital signal line and ground line of the FPCB of the camera module are modeled as a loop feeder that excites the characteristic mode of the PCB ground and the change of noise coupling according to the antenna types are analyzed.

A Study on the Acoustical and Vibrational Characteristics of a Passenger Car(III) -Reduction of Interior Noise of Vehicle Compartment Model by Using Coupling Coefficient and Panel Contribution Factor- (승용차의 차실음향 및 차체진동에 관한 연구 (III) -연성계수 및 패널 기여도를 이용한 차실모델의 실내소음 저감-)

  • 김석현;이장무;김중희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.13-21
    • /
    • 1992
  • In the previous study, car interior noise was analyzed using structural acoustic mode coupling coefficients and noise response in vehicle compartment model was simulated by the developed special purpose program. As a continued study, this paper presents a practical scheme for the interior noise reduction of a passenger car. Noisy panels on the vehicle compartment wall could be easily identified by the analysis using mode coupling coefficients. Numerical simulation for noise reduction was carried out on a simplified vehicle compartment model by using panel contribution factor and the noise reduction effect was verified by the structural modification test using Steel Skin (damping sheet).

AERODYNAMIC AND NOISE CALCULATIONS OF HELICOPTER ROTOR BLADES USING LOOSE CFD-CSD COUPLING METHODOLOGY (CFD-CSD 연계 기법을 이용한 로터 블레이드 공력 및 소음 해석)

  • Kang, H.J.;Kim, D.H.;Wie, S.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.62-68
    • /
    • 2014
  • The aerodynamic and noise calculations were performed through the CFD-CSD loose coupling methodology. In the loose coupling process, the trimmed rotor airloads were predicted by the in-house CFD code based on unstructured overset meshes, and the trim of the rotorcraft and the aeroelastic deformation of rotor blades were accounted with the CAMRAD II rotorcraft comprehensive code. The set of codes was used to analyze the HART-II baseline test condition. The effect of grid resolution and time step was examined and the loose coupling approach was found to be stable and convergent for the case. Comparison of the resulting sectional airloads, structural deformations, the noise carpets and the wake geometry with experimentally measured data was presented and showed the good agreement.

A new bit line structure minimizing coupling noise for DRAM (DRAM의 비트 라인 간 커플링 노이즈를 최소화한 오픈 비트 라인구조)

  • Oh, Myung-Kyu;Jo, Kyoung-Rok;Kim, Sung-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.17-24
    • /
    • 2004
  • This paper describes a novel bit line structure to minimize coupling noise induced by coupling capacitance between bit lines. In DRAMs coupling capacitance is inherently present bit lines. As in submicron process the bit line space gets narrower. bit line coupling capacitance increases and this increased coupling capacitance sharply raises cross-talk noise. In this paper using different layers of metal for adjacent bit lines has been tested to reduces cross-talk noise and a novel bit line structure capable of reducing capacitance is introduced and verified.

A Design of K-Band Low Phase noise Oscillator by Direct Coupling of K-band Dielectric Resonator (유전체 공진기의 직접결합에 의한 K-Band 저위상잡음 발진기 설계)

  • Lim, Eun-Jae;Han, Geon-Hee;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • In this paper, we analysed coupling coefficient between dielectric resonator of high dielectric constant and microstrip line to design for low phase noise dielectric resonator by direct coupling. Also we analysed phase noise of dielectric resonance oscillator with parallel feedback circuit to complement Q by high dielectric constant. We obtained a result from high-stability dielectric oscillator which is optimum designed through analysis of dielectric resonance oscillator phase noise and coupling coefficient. The result is that the phase noise was -83.3dBc/Hz@1KHz at 20.25GHz when we used about 3.6 coupling coefficient and ${\epsilon}_r$=30 dielectric resonator of 20.25GHz dielectric resonance oscillator. As a result, we suggested the direct-connect design method by frequency multiplication mode to prevent phase noise loss at K-Band.

Effects of Mesh Planes on Signal Integrity in Glass Ceramic Packages for High-Performance Servers

  • Choi, Jinwoo;Altabella Lazzi, Dulce M.;Becker, Wiren D.
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.35-50
    • /
    • 2013
  • This paper discusses effects of mesh planes on signal integrity in high-speed glass ceramic packages. One of serious signal integrity issues in high-speed glass ceramic packages is high far-end (FE) noise coupling between signal interconnects. Based on signal integrity analysis, a methodology is presented for reducing far-end noise coupling between signal interconnects in high-speed glass ceramic modules. This methodology employing power/ground mesh planes with alternating spacing and a via-connected coplanar-type shield (VCS) structure is suggested to minimize far-end noise coupling between signal lines in high-speed glass ceramic packages. Optimized interconnect structure based on this methodology has demonstrated that the saturated far-end noise coupling of a typical interconnect structure in glass ceramic modules could be reduced significantly by 73.3 %.

A Capacitively Coupled Multi-Stage LC Oscillator

  • Park, Cheonwi;Park, Junyoung;Lee, Byung-Geun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.149-151
    • /
    • 2015
  • Coupling with a ring of capacitors introduces in-phase coupling current in multi-stage LC oscillators, increasing coupling strength and phase spacing accuracy. Capacitive coupling is effective at high-frequency applications because it increases coupling strength with the operating frequency. However, capacitive loading from the ring lowers operating frequency and reduces the tuning range. Mathematical expressions of phase noise and phase spacing accuracy with capacitive coupling are examined here, and transistor-level simulations confirm the effectiveness of the capacitive coupling.

A Test Algorithm for Word-Line and Bit-line Sensitive Faults in High-Density Memories (고집적 메모리에서 Word-Line과 Bit-Line에 민감한 고장을 위한 테스트 알고리즘)

  • 강동철;양명국;조상복
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.74-84
    • /
    • 2003
  • Conventional test algorithms do not effectively detect faults by word-line and bit-line coupling noise resulting from the increase of the density of memories. In this paper, the possibility of faults caused by word-line coupling noise is shown, and new fault model, WLSFs(Word-Line Sensitive Fault) is proposed. We also introduce the algorithm considering both word-line and bit-line coupling noise simultaneously. The algorithm increases probability of faults which means improved fault coverage and more effective test algorithm, compared to conventional ones. The proposed algorithm can also cover conventional basic faults which are stuck-at faults, transition faults and coupling faults within a five-cell physical neighborhood.

Optimum Welding Position between Shell and Cylinder based on SEA (SEA를 이용한 셸과 실린더의 최적 용접 조건)

  • 이장우;양보석;안병하
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.370-376
    • /
    • 2004
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it ispossible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

Study on Optimum Welding Position between Shell and Cylinder based on SEA. (SEA를 이용한 쉘과 실린더의 최적 용접 조건에 관한 연구)

  • 안병하;이장우;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.969-972
    • /
    • 2003
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way(nl- directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding Point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

  • PDF