• Title/Summary/Keyword: Coupled normal mode method

Search Result 21, Processing Time 0.023 seconds

Internal Resonance and Stability Change for the Two Degree Nonlinear Coupled System (2 자유도 비선형 연성시스템에서 내부공진과 안정성 변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.853-861
    • /
    • 2007
  • To understand the concept of dynamic motion in two degree nonlinear coupled system, free vibration not including damping and excitation is investigated with the concept of nonlinear normal mode. Stability analysis of a coupled system is conducted, and the theoretical analysis performed for the bifurcation phenomenon in the system. Bifurcation point is estimated using harmonic balance method. When the bifurcation occurs, the saddle point is always found on Poincare's map. Nonlinear phenomenon result in amplitude modulation near the saddle point and the internal resonance in the system making continuous interchange of energy. If the bifurcation in the normal mode is local, the motion remains stable for a long time even when the total energy is increased in the system. On the other hand, if the bifurcation is global, the motion in the normal mode disappears into the chaos range as the range becomes gradually large.

  • PDF

MIC를 위한 2선 및 3선 결합선로의 Quasi TEM Mode 정수계산

  • Ryu, Beom;Kim, Cheong-Sik;Chin, Yeon-Kang
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.04a
    • /
    • pp.194-197
    • /
    • 1986
  • The normal mode parameters of microstrip coupled lines are datermined from the self and mutual capacitance and inductance of microstrip lines. In this paper, these capacitance are computed by using the relaxation method based on Quas1-TEM model for shoelded structure. Using these results, the normal mode parameters of two and three microstrip coupled lines are obtained.

  • PDF

Long range incoherent seafloor reverberation model based on coupled normal mode method (연성모드법 기반의 원거리 비상관 해저면 잔향음 모델)

  • Park, Jungyong;Choo, Youngmin;Lee, Keunhwa;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.243-252
    • /
    • 2016
  • In this paper, the incoherent reverberation model based on coupled normal mode method is presented. In the range dependent environment, one way coupled normal mode method is used to calculate the pressure from a source to a scatterer patch and the pressure from a scatterer patch to a receiver. For the computational efficiency, the sound propagation from a source/receiver to the scatterer patch is assumed to occur only in the 2D plane where a source/receiver and scatterer patch are located. For the model verification, problems of the reverberation modeling workshop I and II sponsored by the US office of Naval Research are calculated and the results are compared with the incoherent reverberation model results based on the ray method.

A Design of Multiple Microstrip Line Coupled Circuit for Microwave Integrated Circuit (마이크로파 집적회로를 이용한 복수 마이크로스트립선 결합회로의 설계)

  • Park, Yhl;Kang, Hee-Chang;Chin, Youn-Kang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.9
    • /
    • pp.862-876
    • /
    • 1991
  • In this theses, the procedure for finding the equivalent immittance of an n-line coupled structures is presented in terms of the normal mode parameters of the n-line coupled system. The above generalized equations can be applied to the various Coupled structures including directional couplers, DC blocks, bandpass/band elimination filters, and various other uniformly coupled filters. The design equations are based on a simplified TEM(Quasi TEM) mode. The obtained results and the definition of the scattering parameters for a general coupled line four port with arbitrary terminations are used to present the procedure to determine the optimum physical dimensions matching the given load impedances connected to input, output port. Multiple coupled rnicrostrip two-port with three lines circuit designed shows little discrepancy between the conventional method and this one. Four port with five lines were fabricated on teflon substrate($e$r=2.55) with its thickness h=l.588mm designed at the center frequency, 4 GHz. Their measured results are fairly close to the ones by computation.

  • PDF

ON BIFURCATION MODES AND FORCED RESPONSES IN COUPLED NONLINEAR OSCILLATORS

  • Pak, Chol-Hui;Shin, Hyeon-Jae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.29-67
    • /
    • 1995
  • A procedure is formulated, in this paper, to compute the bifurcation modes born by the stability change of normal modes, and to compute the forced responses associated with bifurcation modes in inertially and elastically coupled nonlinear oscillators. It is assumed that a saddle-loop is formed in Poincare map at the stability chage of normal modes. In order to test the validity of procedure, it is applied to one-to-one internal resonant systems in which the solutions are guaranteed within the order of a small perturbation parameter. The procedure is also applied to the exact system in which normal modes are written in exact form and the stability of normal modes can be exactly determined. In this system the stability change of normal modes occurs several times so that various types of bifurcation modes are created. A method is described to identify a fixed point on Poincare map as one of bifurcation modes. The limitations and advantage of proposed procedure are discussed.

Dynamic Response Analysis of Composite H-Type Cross-Section Beams to Random Loads (랜덤하중이 가해진 복합재료 H-형 보의 동적 응답 해석)

  • Kim, Sung-Kyun;Song, Pong-Gun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.130-135
    • /
    • 2011
  • A study of the bending-extension-transverse shear coupled random response of the composite beams with thin-walled open sections subjected to various types of concentrated and distributed random excitations is dealt with in this paper. First of all, equations of motion of thin-walled composite H-type cross-section beams incorporating a number of nonclassical effects of transverse shear and primary and secondary warping, and anisotropy of constituent materials are derived. On the basis of derived equations of motion, analytical expressions for the displacement response of the composite beams are derived by using normal mode method combined with frequency response function method.

  • PDF

Mode Coupling at Oblique Incidence in a Corrugated Dielectric Waveguide: Analysis by the Singular Perturbation Method (굴곡형 격자도파로에서 비스듬히 입사하는 파동에 대한 모드 결합현상:특이접동 방법에 의한 해석)

  • Kim Hong-Koo;Shin Sang-Yung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 1986
  • The optical wave interactions in a sinusoidally corrugated dielectric waveguide are analyzed for the oblique incidence case. The coupled mode equations which govern the interactions are derived by the singular perturbation method for the TE-TE mode coupling. The results are compared with those of normal mode analysis by Wagatsuma et al. and total field analysis by Stegeman et al. Phase mismatching effects on the diffraction efficiency are also investigated.

  • PDF

On the Improved Method for the Mode Shapes of a Curved Beam in a Drum Brake

  • Lim, Byoung-Duk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.63-75
    • /
    • 1996
  • The squeal vibration of a drum is the major source of brake noise. In this system the binary flutter model of squeal vibration was employed for the drum brake of a passenger car. The vibration analysis of a drum brake was performed by using normal modes, which are obtained by variational method. An improved method for the estimation of shoe modes is proposed and the results are compared with the exact solutions. Numerical results for the coupled system of drum and shoes good agreement with the results of experimental model analysis and those obtained by FE analysis.

  • PDF

Analysis of Symmetric and Asymmetric Multiple Coupled Line on the Multi-layer Substrate (다층 기판위의 대칭 및 비대칭의 다중 결합선로에 대한 해석)

  • Kim, Yoonsuk;Kim, Minsu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.16-22
    • /
    • 2013
  • A general characterization procedure based on the extraction of a 2n-port admittance matrix corresponding to n uniform coupled lines on the multi-layered substrate using the Finite-Difference Time-Domain (FDTD) technique is presented. In this paper, the frequency-dependent normal mode parameters are obtained from the 2n-port admittance matrix to analyze multi-layered asymmetric coupled line structure, which in turn provides the frequency-dependent propagation constant, effective dielectric constant, and line-mode characteristic impedances. To illustrate the technique, several practical coupled line structures on multi-layered substrate have been simulated. Especially, embedded conductor structures have been simulated. Comparisons with Spectral Domain Method are given, and their results agree well. It is shown that the FDTD based time domain characterization procedure is an excellent broadband simulation tool for the design of multiconductor coupled lines on multilayered PCBs as well as thick or thin hybrid structures.

An accurate substructural synthesis approach to random responses

  • Ying, Z.G.;Zhu, W.Q.;Ye, S.Q.;Ni, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.47-75
    • /
    • 2011
  • An accurate substructural synthesis method including random responses synthesis, frequency-response functions synthesis and mid-order modes synthesis is developed based on rigorous substructure description, dynamic condensation and coupling. An entire structure can firstly be divided into several substructures according to different functions, geometric and dynamic characteristics. Substructural displacements are expressed exactly by retained mid-order fixed-interfacial normal modes and residual constraint modes. Substructural interfacial degree-of-freedoms are eliminated by interfacial displacements compatibility and forces equilibrium between adjacent substructures. Then substructural mode vibration equations are coupled to form an exact-condensed synthesized structure equation, from which structural mid-order modes are calculated accurately. Furthermore, substructural frequency-response function equations are coupled to yield an exact-condensed synthesized structure vibration equation in frequency domain, from which the generalized structural frequency-response functions are obtained. Substructural frequency-response functions are calculated separately by using the generalized frequency-response functions, which can be assembled into an entire-structural frequency-response function matrix. Substructural power spectral density functions are expressed by the exact-synthesized substructural frequency-response functions, and substructural random responses such as correlation functions and mean-square responses can be calculated separately. The accuracy and capacity of the proposed substructure synthesis method is verified by numerical examples.