DOI QR코드

DOI QR Code

Analysis of Symmetric and Asymmetric Multiple Coupled Line on the Multi-layer Substrate

다층 기판위의 대칭 및 비대칭의 다중 결합선로에 대한 해석

  • Kim, Yoonsuk (Electronics Engineering, Korea Air Force Academy) ;
  • Kim, Minsu (Electronics Engineering, Korea Air Force Academy)
  • 김윤석 (공군사관학교 전자공학과) ;
  • 김민수 (공군사관학교 전자공학과)
  • Received : 2012.11.13
  • Published : 2013.03.25

Abstract

A general characterization procedure based on the extraction of a 2n-port admittance matrix corresponding to n uniform coupled lines on the multi-layered substrate using the Finite-Difference Time-Domain (FDTD) technique is presented. In this paper, the frequency-dependent normal mode parameters are obtained from the 2n-port admittance matrix to analyze multi-layered asymmetric coupled line structure, which in turn provides the frequency-dependent propagation constant, effective dielectric constant, and line-mode characteristic impedances. To illustrate the technique, several practical coupled line structures on multi-layered substrate have been simulated. Especially, embedded conductor structures have been simulated. Comparisons with Spectral Domain Method are given, and their results agree well. It is shown that the FDTD based time domain characterization procedure is an excellent broadband simulation tool for the design of multiconductor coupled lines on multilayered PCBs as well as thick or thin hybrid structures.

n 개의 균일한 결합선로를 해석하기 위하여 2n-port 어드미턴스 매트릭스의 추출에 기초한 일반적인 특성화 절차가 제시된다. 본 논문에서는 비대칭 다중 결합선로를 해석하기 위하여 시간영역의 유한차분법을 사용하여 정규화 모드 파라미터 접근법의 적용을 제안한다. 주파수 의존적인 정규화 모드 파라미터는 2n-port 어드미턴스 매트릭스로부터 얻어지고, 이로부터 주파수 의존적인 전파상수와 유효 유전율 및 결합선로의 특성임피던스를 계산할 수 있다. 이 기법을 설명하기 위해 몇몇의 실질적인 다중 유전체상의 결합선로 구조들이 모의 실험되었으며, 특히 전도체가 유전체 사이에 내재된 형태의 선로가 해석되었다. 시간영역 유한 차분법을 활용한 결과는 Spectral Domain Method의 모의실험 결과와 비교하였고, 잘 일치함을 보였다. 시간영역의 특성화 절차에 기인한 유한차분법은 얇거나 두꺼운 혼성 구조 뿐 아니라 다층 PCB상의 다중의 전도체 결합 선로 설계를 위한 훌륭한 광대역 모의실험 도구가 됨을 볼 수 있다.

Keywords

References

  1. H. Guckel and I. Palocz, "A parallel-plate waveguide approach to micro-miniaturized planar transmission lines for integrated circuits," IEEE Trans. MTT, vol. 15, pp. 468-476, Aug. 1967. https://doi.org/10.1109/TMTT.1967.1126505
  2. H. Hasegawa and H. Yanai, "Properties of microstrip line on Si-SiO2 system," IEEE Trans. MTT, vol. 19, pp. 869-881, Nov. 1971. https://doi.org/10.1109/TMTT.1971.1127658
  3. V. Tripathi and R. Bucolo, "Analysis and modeling of multilevel parallel and crossing interconnection lines," IEEE Trans. ED, vol. 34, pp. 650-658, Mar. 1987. https://doi.org/10.1109/T-ED.1987.22976
  4. M. Abushaaban and S. Scanlan, "Modal circuit decomposition of lossy multiconductor transmission lines," IEEE Trans. MTT, vol. 44, pp.1046-1057, July 1996.
  5. S. Seki and H. Hasegawa, "Analysis of crosstalk in very high-speed LSI/VLSI's using a coupled multiconductor MIS microstrip line model," IEEE Trans. MTT, vol. 32, pp. 1715-1720, Dec. 1984. https://doi.org/10.1109/TMTT.1984.1132920
  6. H. Hasegawa and S. Seki, "Analysis of interconnection delay on very high speed LSI/VLSI chips using an MIS microstrip line model," IEEE Trans. MTT, vol. 32, pp. 1721-1727, Dec. 1984. https://doi.org/10.1109/TMTT.1984.1132921
  7. G. Ghione and G. Vecchi, "Modeling of multiconductor buses and analysis of crosstalk, propagation delay, and pulse distortion in high-speed GaAs logic circuits," IEEE Trans. MTT, vol. 37, pp. 445-456, Mar. 1989.
  8. J. Gilb and C. Balanis, "Pulse distortion on multilayer coupled microstrip lines," IEEE Trans. MTT, vol. 37, pp. 1620-1628, Oct. 1989. https://doi.org/10.1109/22.41010
  9. V. Tripathi and R. Bucolo, "Analysis and modeling of multilevel parallel and crossing interconnection lines," IEEE Trans. ED, vol. 34, pp. 650-658, Mar. 1987. https://doi.org/10.1109/T-ED.1987.22976
  10. C. Chan and R. Mittra, "The propagation characteristics of signal lines embedded in a multilayered structure in the presence of a periodically perforated ground plane," IEEE Trans. MTT, vol. 36, pp. 968-975, June 1988. https://doi.org/10.1109/22.3621
  11. Y. Kim, "Analysis of a new crossbar embedded structure for improved attenuation characteristics on the various lossy media," Journal of KICS, vol. 43-TC, pp. 83-88 , Dec. 2006.
  12. Y. Kim, "Analysis of symmetric coupled line with crossbar embedded structure for improved attenuation characteristics on the various lossy media," Journal of KICS, vol. 47-TC, pp. 61-67, Aug. 2010.
  13. Y. Kim and M. Kim, "Improvement of attenuation characteristics for multiple coupled lin structure on the specific lossy media," Journal of KICS, vol. 48-TC, pp. 35-41, Dec. 2011.