• Title/Summary/Keyword: Countercurrent chromatography

Search Result 10, Processing Time 0.023 seconds

Efficient Isolation of Dihydrophaseic acid 3'-O-β-D-Glucopyranoside from Nelumbo nucifera Seeds Using High-performance Countercurrent Chromatography and Reverse-phased High-performance Liquid Chromatography

  • Rho, Taewoong;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.288-292
    • /
    • 2018
  • High-performance countercurrent chromatography (HPCCC) coupled with reversed-phase highperformance liquid chromatography (RP-HPLC) method was developed to isolate dihydrophaseic acid 3'-O-${\beta}$-D-glucopyranoside (DHPAG) from the extract of Nelumbo nucifera seeds. Enriched DHPAG sample (2.3 g) was separated by HPCCC using ethyl acetate/n-butanol/water system (6:4:10, v/v/v, normal-phase mode, flow rate: 4.0 mL/min) to give 23.1 mg of DHPAG with purity of 88.7%. Further preparative RP-HPLC experiment gave pure DHPAG (16.3 mg, purity > 98%). The current study demonstrates that utilization of CCC method maximizes the isolation efficiency compared with that of solid-based conventional column chromatography.

Preparative Isolation of Ginseng Saponin from Panax ginseng Root Using High-speed Countercurrent Chromatography (High-speed countercurrent chromatography를 이용한 인삼 saponin의 대량 분리 농축)

  • Lee, Chang-Ho;Lee, Boo-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.518-521
    • /
    • 2004
  • Ginseng saponin was isolated from panax ginseng root using high-speed countercurrent chromatography (HSCCC). Preliminary studies were performed to optimize physical properties of two-phase solvent system and operating parameters including rotation speed of column, elution mode of mobile phase, and flow rate. Two-phase solvent system for isolation of ginseng saponins was composed of chloroform, water, and methanol as blending solvent. Chloroform-aqueous methanol (4:6) systems with various concentration of methanol in water were evaluated for retention of stationary phase in column. Retention of stationary phase decreased with increasing flow rate in tail-to-head elution mode using upper phase as mobile phase and head-to-tail elution mode using lower phase as mobile phase. Latter mode produced high retention at flow rate of 5 mL/min. Optimum conditions for isolation of saponin were chloroform/methanol/water (40/39/21) solvent system; mobile phase, of lower organic layer, flow rate, of 5 mL/min, head to tail elution mode, rotation speed, of 800 rpm, and sample injection, of $200{\mu}L$, Recovery yield of ginseng saponin from panax ginseng root extract by HSCCC was 63.6%, and the purity of HSCCC fractions was verified by TLC.

Isolation of Fucosterol from Pelvetia siliquosa by High-speed Countercurrent Chromatography

  • Hwang, Seung Hwan;Jang, Jai Man;Lim, Soon Sung
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.191-195
    • /
    • 2012
  • We report here the use of high-speed countercurrent chromatography (HSCCC) in the preparative isolation and purification of the bioactive component, fucosterol, from Pelvetia siliquosa. A crude extract was obtained by ultrasonic extraction of powdered P. siliquosa using methylene chloride and was then subjected to separation and purification by HSCCC, coupled with evaporative light-scattering detection. Preparative HSCCC was performed successfully using a two-phase solvent system, n-heptane:methanol (3:2, v/v), to obtain 10.96 mg fucosterol with 96.8% purity from 50 mg of crude extract; the recovery rate was approximately 90.5%.

Rapid Isolation of Cyanidin 3-Glucoside and Peonidin 3-Glucoside from Black Rice (Oryza sativa) Using High-Performance Countercurrent Chromatography and Reversed-Phase Column Chromatography

  • Jeon, Heejin;Choi, Janggyoo;Choi, Soo-Jung;Lee, Chang Uk;Yoon, Shin Hee;Kim, Jinwoong;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.30-33
    • /
    • 2015
  • Anthocyanins are water soluble plant pigments which are responsible for the blue, red, pink, violet colors in several plant organs such as flowers, fruits, leaves and roots. In recent years, anthocyanin-rich foods have been favored as dietary supplements and health care products due to diverse biological activities of anthocyanins including antioxidant, anti-allergic, anti-diabetic, anti-microbial, anti-cancer and preventing cardiovascular disease. High-performance countercurrent chromatography (HPCCC) coupled with reversed-phase medium pressure liquid chromatography (RP MPLC) method was applied for the rapid and efficient isolation of cyanidin 3-glucoside (C3G) and peonidin 3-glucoside (P3G) from black rice (Oryza sativa L., Poaceae). The crude black rice extract (500 mg) was subjected to HPCCC using two-phase solvent system composed of tert-butyl methyl ether/n-butanol/ acetonitrile/0.01% trifluoroacetic acid (TBME/B/A/0.01% TFA, 1 : 3 : 1 : 5, v/v, flow rate - 4.5 mL/min, reversed phase mode) to give enriched anthocyanin extract (37.4 mg), and enriched anthocyanin extract was sequentially chromatographed on RP-MPLC to yield C3G (16.5 mg) and P3G (8.7 mg). The recovery rate and purity of isolated C3G were 76.0% and 98.2%, respectively, and those of P3G were 58.3% and 96.3%, respectively. The present study indicates that HPCCC coupled with RP-MPLC method is more rapid and efficient than multi-step conventional column chromatography for the separation of anthocyanins.

Isolation of Phytochemicals from Salvia plebeia Using Countercurrent Chromatography Coupled with Reversed-phase HPLC

  • Kil, Hyun Woo;Rho, Taewoong;Seo, Young Ju;Yu, Aram;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.236-243
    • /
    • 2020
  • Salvia plebeia R. Br. is a plant which has been used as an edible crop and traditional medicine in Asian countries. In this study, HPLC-PDA analysis and countercurrent chromatography (CCC) coupled with reversed-phase (RP) HPLC method were applied to isolate ten isolates from 3.3 g of n-butanol soluble extract from hot-water extract of S. plebeia. The use of CCC enabled us to efficiently fractionate the starting material with less sample loss and facilitate the isolation of compounds from S. plebeia extract using RP-HPLC. The isolates were determined to be caffeic acid (1), 6-hydroxyluteolin 7-O-β-D-glucoside (2), eudebeiolide B (3), (R)-rosmarinic acid (4), homoplantaginin (5), eudebeiolide D (6), plebeiolide C (7), salpleflavone (8), eupafolin (9) and hispidulin (10) based on the spectroscopic evidence.

Effects of pH and Potassium Chloride in Solvent System of High-Speed Countercurrent Chromatography (pH 및 염화칼륨 첨가가 고속역류크로마토그래피의 용매시스템에 미치는 영향)

  • Lee, Chang-Ho;Lee, Boo-Yong;Lee, Hyun-Yu;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1222-1227
    • /
    • 1997
  • Effects of the physical properties of solvent system such as pH and polarity change by salt addition in solvent system were investigated by using high speed countercurrent chromatography apparatus (Model CCC-1000, Pharm-Tech Research Corp. USA). The changes of pH and interfacial tension in solvent system of high speed countercurrent chromatography did not significantly affect on retention of stationary phase, but induced remarkable changes in the partition coefficient of ginkgo flavonoids, kaempferol, quercetin and isorhamnetin. The partition coefficients of ginkgo flavonoid standard increase with an increased pH of solvent system and quercetin sharply increased at pH 10.0. Retention of stationary phase decreases with an increased concentration of KCl in butanol of solvent system. Interfacial tension between two phase in solvent system of hexane increases with an increased concentration of KCl. The polarity of solvent system significantly changes the partition coefficients of ginkgo flavonoid.

  • PDF

Autotoxicity of alfalfa flower extract and its allelopathy to Echinochloa crus-galli (알팔파 꽃 추출물의 Autotoxicity와 돌피에 대한 Allelopathy)

  • Ill Min, Chung;Song Joong, Yun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.821-832
    • /
    • 1997
  • The aim of this study was to separate or purify some bioactive compounds from flowers of alfalfa(Medicago sativa L.) and to test of the isolated compounds on alfalfa for their autotoxicity and on Echinochloa crus-galli for their allelopathy for seed germination and seedling weight. Using thin layer chromatography(TLC) of $CHCl_3$ extracts, the most inhibitory band to alfalfa seed germination was determined. Germination inhibition of this extract suggested a complex chemical interaction. Separation and purification of compounds with CHCl$_3$ extract of fresh alfalfa flowers were conducted by a silica gel TLC, and microcrystalline cellulose TLC(MCTLC), followed by droplet countercurrent chromatography(DCCC) bioassay. Preliminary identification was done by high perfomance liquid chromatography(HPLC) on the most inhibitory fractions in DCCC. Ferulic acid, caffeic acid, vanillic acid, rutin, narringin were identified in fraction 5 and ferulic acid, caffeic acid, vanillic acid, rutin, coumarin in fraction 6. The phytotoxicity of their individual compound was tested on alfalfa and Echinochloa crus-galli seed germination and seedling weight. Coumarin and ferulic acid showed the most inhibitory effect on alfalfa seed germination and Echinochloa crus-galli seedling fresh and dry weight. These compounds may be, at least in part, involved in autotoxicity and allelopathy.

  • PDF

Isolation and Development of Quantification Method for Cyanidin-3-Glucoside and Cyanidin-3-Rutinoside in Mulberry Fruit by High-Performance Countercurrent Chromatography and High-Performance Liquid Chromatography

  • Choi, Soo-Jung;Jeon, Heejin;Lee, Chang Uk;Yoon, Shin Hee;Bae, Soo Kyung;Chin, Young-Won;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.20-24
    • /
    • 2015
  • Cyanidin-3-glucoside (C3G) and cyanidin-3-rutinoside (C3R) were isolated by high-performance countercurrent chromatography (HPCCC) using a two-phase solvent system composed of tert-butyl methyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (1 : 3 : 1 : 5 : 0.01, v/v) to give pure C3G (34.1 mg) and C3R (14.3 mg) from 1.5 g crude mulberry fruit extract. Using the pure C3G and C3R, a reliable high-performance liquid chromatography (HPLC) method was developed and validated to determine the C3G and C3R contents in mulberry fruit. C3G and C3R were separated simultaneously using an Eclipse XDB-C18 column ($4.6{\times}250mm$ I.D., $5{\mu}m$) coupled with a photodiode array detector (PDA). The gradient elution of the mobile phase consisting of acetonitrile (0.5% formic acid) and water (0.5% formic acid) was applied (1.0 mL/min), and the detection wavelength was 520 nm. The calibration curves of C3G and C3R showed good linearity (both with $r^2=0.9996$) in the concentration range $15.625-500{\mu}g/mL$, and the relative standard deviations (RSD%) of intra- and inter-day variability were in the ranges 2.1 - 8.2% and 4.1 - 17.1%, respectively. The accuracies were ranged 96.5 - 102.6% for C3G and C3R, respectively. The developed HPLC method was used to determine the contents of C3G and C3R in newly harvested mulberry from eight different provinces of Korea.

Isolation and Purification of Bioactive Materials Using High-Performance Counter-Current Chromatography (HPCCC) (고속역류크로마토그래피 기술을 이용한 생리활성 물질의 분리 및 정제)

  • Jung, Dong-Su;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2010
  • Many successive liquid-liquid extractions occur enabling purification of the crude material to occur. In high performance counter-current chromatography (HPCCC), crude material is partitioned between two immiscible layers of solvent phases. The stationary phase (SP) is retained by hydrodynamic force field effect and the mobile phase (MP) is pumped through the column. Purification occurs because of the different solubility of the components in the liquid mobile and stationary phases. There are many key benefits of liquid stationary phases such as high mass and volume injection loadings, total sample recovery, and easy scale-up. Many researchers showed that predictable scale-up from simple test is feasible with knowledge of the stationary phase retention for the planned process scale run. In this review we review the recent advances in HPCCC research and also describe the key applications such as natural products and synthetics (small or large molecules).