Isolation and Purification of Bioactive Materials Using High-Performance Counter-Current Chromatography (HPCCC)

고속역류크로마토그래피 기술을 이용한 생리활성 물질의 분리 및 정제

  • Jung, Dong-Su (BPC Department, Shinhan Science Corporation) ;
  • Shin, Hyun-Jae (Department of Chemical & Biochemical Engineering, Chosun University)
  • 정동수 (신한과학주식회사 BPC 사업부) ;
  • 신현재 (조선대학교 생명화학공학과)
  • Received : 2010.02.25
  • Accepted : 2010.06.24
  • Published : 2010.06.30

Abstract

Many successive liquid-liquid extractions occur enabling purification of the crude material to occur. In high performance counter-current chromatography (HPCCC), crude material is partitioned between two immiscible layers of solvent phases. The stationary phase (SP) is retained by hydrodynamic force field effect and the mobile phase (MP) is pumped through the column. Purification occurs because of the different solubility of the components in the liquid mobile and stationary phases. There are many key benefits of liquid stationary phases such as high mass and volume injection loadings, total sample recovery, and easy scale-up. Many researchers showed that predictable scale-up from simple test is feasible with knowledge of the stationary phase retention for the planned process scale run. In this review we review the recent advances in HPCCC research and also describe the key applications such as natural products and synthetics (small or large molecules).

역류크로마토그래피 (counter-current chromatography, CCC)는 일련의 분배과정을 한 개의 튜브 내에서 연속적으로 일어나도록 고안된 시스템으로서 컬럼으로는 polytetrafluoroethylene(PTFE) 튜브가 다층으로 감겨있는 원통형의 홀더 3개가 서로 기어를 통해 물려있으며, 홀더가 회전과 공전을 통해 튜브의 꼬임을 방지하는 rotary seal-free flow centrifuge 시스템으로 되어있다. 역상 HPLC (reverse phase HPLC)에서는 고정상이 실리카에 결합된 유기물단 (organic moiety)이 수용성 이동상 물질에 의해서 용매화 (solvated)되는 반면 CCC는 실리카 대신에 강한 중력장에 의해 분리되는 자유로운 용매가 고정상이 되며 이 고정상의 부피비율은 20-30%에 이른다. 즉 고체담체에 결합된 유기관능기 대신에 물과 섞이지 않는 hexane 같은 유기용제가 고정상으로 사용되는 것이다. 고속역류크로마토그래피 (high-performance countercurrent chromatography, HPCCC)는 CCC의 기능을 향상시킨 분리시스템으로서 높은 중력장하에서 높은 이동상 속도와 높은 분리효율과 짧은 분리시간을 특징으로 하고 있다. 특히 mg 단위에서 kg 단위로의 스케일업이 선형적으로 가능하다는 큰 장점을 지니고 있다. 이 총설에서는 현재까지 개발된 CCC의 일반적인 이론을 간략히 정리하고 최신 HPCCC 장비의 적용 예를 살펴보고 그 응용분야로서 생리활성물질의 분리 및 정제와 관련된 연구동향을 정리하였다.

Keywords

References

  1. Conway, W. D. (1990) Countercurrent Chromatography. p. 18, VCH Publishers Inc, New York.
  2. Berthod, A. (2003) Counter-current Chromatography. p10, Elsevier, Amsterdam.
  3. Martin, A. J. P. and R. L. M. Synge (1941) A new form of chromatogram employing two phases. Biochem. J. 35: 1358. https://doi.org/10.1042/bj0351358
  4. Craig, L. C. and O. Post (1949) Apparatus for countercurrent distribution. Anal. Chem. 21: 500. https://doi.org/10.1021/ac60028a013
  5. Ito, Y., M. Weinstein, I. Aoki, R. Harada, E. Kimura, and K. Nunogaki (1966) The coil planet centrifuge. Nature 212: 985. https://doi.org/10.1038/212985a0
  6. Ito, Y. (2005) Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography J. Chromatogr. A 1065: 145-168. https://doi.org/10.1016/j.chroma.2004.12.044
  7. Sorensen, J. M. and W. Arit (1980) Liquid-Liquid Equilibrium Data Collection. Vol. V, Parts 2 and 3. Dechema, Fankfurt/Main.
  8. Lee, C. H., B. Y. Lee, and C. H. Lee (1997) The effects of operating parameters of high-speed countercurrent chromatograph on efficiency. Food Eng. Progr. 1: 198-205.
  9. Tsao, R. and Z. Deng (2004) Separation procedures for naturally occurring antioxidant phytochemicals. J. Chromatogr. B 812: 85-99. https://doi.org/10.1016/S1570-0232(04)00764-0
  10. Chen, L. and I. A. Sutherland (2006) How to achieve rapid separation in counter-current chromatography. J. Chromatogr. A 1114: 29-33. https://doi.org/10.1016/j.chroma.2006.02.019
  11. Becker, H., J. Reichling, and W. Hsieh (1982) Water-free solvent system for droplet counter-current chromatography and its suitability for the separation of non-polar substances. J. Chromatogr. A 237: 307-310. https://doi.org/10.1016/S0021-9673(00)83239-2
  12. Hanke, F. J. and L. Kubo (1985) Increasing the speed of droplet counter-current chromatography separations. J. Chromatogr. A 329: 395-398. https://doi.org/10.1016/S0021-9673(01)81946-4
  13. Yuan, Y., B. Wang, L. Chen, H. Luo, D. Fisher, I. A. Sutherland, and Y. Wei (2008) How to realize the linear scale-up process for rapid purification using high-performance counter- current chromatography. J. Chromatogr. A 1194: 192-198. https://doi.org/10.1016/j.chroma.2008.04.049
  14. Zhang, M., S. Ignatova, Q. Liang, F. W. Jun, I. Sutherland, Y. Wang, and G. Luo (2009) Rapid and high-throughput purification of salvianolic acid B from Salvia miltiorrhiza Bunge by high-performance counter-current chromatography, J. Chromatogr. A 1216: 3869-3873. https://doi.org/10.1016/j.chroma.2009.02.067
  15. Yao, S., J. Luo, X. Huang, and L. Kong (2008) Application of preparative high-speed counter-current chromatography/preparative high-performance liquid chromatography mode in rapid separation of saponins. J. Chromatogr. B 864: 69-77. https://doi.org/10.1016/j.jchromb.2008.01.047
  16. Foucault, A. P. (1991) Countercurrent chromatography. Anal. Chem. 63: 569A-579A. https://doi.org/10.1021/ac00010a002
  17. Weisz, A., A. L. Scher, K. Shinomiya, H. M. Fales, and Y. Ito (1994) A new preparative-scale purification technique: pH-zone-refining countercurrent chromatography. J. Am. Chem. Soc. 116: 704-708. https://doi.org/10.1021/ja00081a035
  18. Friesen, J. B. and G. E. Pauli (2005) G.U.E.S.S.-A generally useful estimate of solvent system for CCC. J. Liq. Chromatogr. 28: 2777-2806. https://doi.org/10.1080/10826070500225234
  19. Guzlek, H., P. L. Wood, and L. Janaway (2009) Performance comparison using the GUESS mixture to evaluate counter-current chromatography instruments. J. Chromatogr. 1216: 4181-4186. https://doi.org/10.1016/j.chroma.2009.02.091
  20. Lee, C. H., B. Y. Lee, and C. H. Lee (1999) The separation of major flavonoglycosides from Ginkgo biloba L. leaves by high-speed counter-current chromatography. Food Sci. Biotechnol. 8: 189-192.
  21. Lee, C. H. and B. Y. Lee (2004) Preparative isolation of ginseng saponin from Panax ginseng root using high-speed countercurrent chromatography. Korean J. Food Sci. Technol. 36: 518-521.
  22. Chen, X., C. Yi, X. Yang, and X. Wang (2004) Liquid chromatography of active principles in Sophora flavescens root. J. Chromatogr. B 812: 149-163. https://doi.org/10.1016/S1570-0232(04)00679-8
  23. Gao, M., M. Gu, and C. Liu (2006) Two-step purification of scutellarin from Erigeron breviscapus (vant.) Hand. Mazz. by high-speed counter-current chromatography. J. Chromatogr. B 838: 139-143. https://doi.org/10.1016/j.jchromb.2006.04.030
  24. Chen, L., Q. Zhang, G. Yang, L. Fan, J. Tang, I. Garrard, S. Ignatova, D. Fisher, and I. A. Sutherland (2007) Rapid purification and scale-up of honokiol and magnolol using high-capacity high-speed counter-current chromatography. J. Chromatogr. A 1142: 115-122. https://doi.org/10.1016/j.chroma.2006.09.098
  25. Yuan, Y., L. Houding, and C. Lijuan (2008) Linear scale-up of the separation of active components from Oroxylum indicum using high-speed counter-current chromatography. Chin. J. Chromatogr. 26: 489-493. https://doi.org/10.1016/S1872-2059(08)60024-3
  26. Ye, H., S. Ignatova, H. Luo, Y. Li, A. Peng, L. Chen, and I. Sutherland (2008) Preparative separation of a terpenoid and alkaloids from Tripterygium wilfordii Hook. f. using high-performance counter-current chromatography: Comparison of various elution and operating strategies. J. Chromatogr. A 1213: 145-153. https://doi.org/10.1016/j.chroma.2008.09.116
  27. Sutherland, I. A., G. Audo, E. Bourton, F. Couillard, D. Fisher, I. Garrard, P. Hewitson, and O. Intes (2008) Rapid linear scale-up of a protein separation by centrifugal partition chromatography. J. Chromatogr. A 1190: 57-62. https://doi.org/10.1016/j.chroma.2008.02.092
  28. Lee, C. H., B. Y. Lee, H. Y. Lee, and C. H. Lee (1997) Effects of pH and potassium chloride in solvent system of high-speed countercurrent chromatography. Korean J. Food Sci. Technol. 29: 1222-1227.
  29. Sutherland, I., P. Hewitson, and S. Ignatova (2009) Scaleup of counter-current chromatography: Demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale. J. Chromatogr. A 1216: 8787-8792. https://doi.org/10.1016/j.chroma.2009.03.040
  30. Sutherland, I., P. Hewitson, and S. Ignatova (2009) New 18-l process-scale counter-current chromatography centrifuge. J. Chromatogr. A 1216: 4201-4205. https://doi.org/10.1016/j.chroma.2008.11.097
  31. Wang, K., Z. Liu, J. Huang, X. Dong, L. Song, Y. Pan, and F. Liu (2008) Preparative isolation and purification of theaflavins and catechins by highspeed countercurrent chromatography. J. Chromatogr. B 867: 282-286. https://doi.org/10.1016/j.jchromb.2008.04.005
  32. Yang, C., D. Li, and X. Wan (2008) Combination of HSCCC and Sephadex LH-20 methods: An approach to isolation and purification of the main individual theaflavins from black tea. J. Chromatogr. B 861: 140-144. https://doi.org/10.1016/j.jchromb.2007.11.022
  33. Shi, S., D. Jiang, M. Zhao, and P. Tu (2007) Preparative isolation and purification of triterpene saponins from Clematis mandshurica by high-speed counter-current chromatography coupled with evaporative light scattering detection. J. Chromatogr. B 852: 679-683. https://doi.org/10.1016/j.jchromb.2007.02.056
  34. Shi, S., K. Huang, Y. Zhang, Y. Zhao, and Q. Du (2007) Purification and identification of antiviral components from Laggera pterodonta by high-speed counter-current chromatography. J. Chromatogr. B 859: 119-124. https://doi.org/10.1016/j.jchromb.2007.09.016
  35. Guliyev, V. B., M. Gul, and A. Yildirim (2004) Hippophae rhamnoides L.: chromatographic methods to determine chemical composition, use in traditional medicine and pharmacological effects. J. Chromatogr. B 812: 291-307. https://doi.org/10.1016/S1570-0232(04)00720-2
  36. Cao X., Y. Tian, T. Y. Zhang, and Y. Ito (1998) Separation and purification of 10-deacetylbaccatin III by high-speed counter-current chromatography. J. Chromatogr. A 813: 397-401. https://doi.org/10.1016/S0021-9673(98)00360-4
  37. Sutherland, I. A. and D. Fisher (2009) Role of counter-current chromatography in the modernisation of Chinese herbal medicines. J. Chromatogr. A 1216: 740-753. https://doi.org/10.1016/j.chroma.2008.11.095