• Title/Summary/Keyword: Coulomb friction

Search Result 226, Processing Time 0.024 seconds

Constitutive law for wedge-tendon gripping interface in anchorage device - numerical modeling and parameters identification

  • Marceau, D.;Fafard, M.;Bastien, J.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.609-628
    • /
    • 2003
  • Mechanical anchorage devices are generally tested in the laboratory and may be analyzed using the finite element method. These devices are composed of many components interacting through diverse contact interfaces. Generally, a Coulomb friction law is sufficient to take into account friction between smooth surfaces. However, in the case of mechanical anchorages, a gripping system, named herein the wedge-tendon system, is used to anchor the prestressing tendon. The wedge inner surface is made of a series of triangular notches designed to grip the tendon. In this particular case, the Coulomb law is not adapted to simulate the contact interface. The present paper deals with a new constitutive contact/gripping law to simulate the gripping effect. A parameter identification procedure, based on experimental results as well as on a finite element/neural network approach, is presented. It is demonstrated that all parameters have been selected in a satisfactory way and that the proposed constitutive law is well adapted to simulate the wedge gripping effect taking place in a mechanical anchorage device.

Simple structural model of Heunginjimun with coulomb friction (흥인지문의 쿨롱 마찰력을 도입한 단순 해석모델)

  • Park, Sung-Ah;Min, Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.516-520
    • /
    • 2011
  • 본 논문에서는 먼저 흥인지문에 대해 상시진동실험을 수행하고, 그 데이터를 분석하여 흥인지문의 고유진동수, 모드, 감쇠비의 특성을 분석하였다. 그 결과로부터 흥인지문의 병진모드를 파악하였고, 병진모드에서 측정한 여러 기둥의 모드 상대크기와 위상이 동일함을 확인하였다. 저차 병진모드에서 모든 기둥이 같은 방향으로 강성을 발휘하기 때문에 각층의 강성을 합한 등가의 층강성을 가지는 2자유도의 동적강체해석모델을 제시하였다. 이 해석모델은 선형 범위 내에서 거동한다는 것으로 가정하여 층강성을 산정하였다. 실제 흥인지문의 접합부에는 부재간의 이음과 맞춤에 의한 마찰력이 작용한다. 접합부를 누르는 무거운 지붕하중에 의해 이 마찰력은 증가하게 되고, 이로써 횡하중에 저항하게 된다. 이러한 접합부에 강한 횡하중이 작용하게 되면, 접합부의 이완 및 마찰력의 저하 등으로 인하여 횡강성의 저하가 급격히 일어나는 비선형 특성을 갖게 된다. 이러한 흥인지문의 비선형적인 특성을 파악하기 위해 흥인지문 해석모델에 쿨롱 마찰력을 도입하여 비선형적인 해석모델을 제시하였다.

  • PDF

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF

An Improved Friction Model for Precise Tracking Control Systems (정밀 위치제어 시스템을 위한 개선된 마찰 모델)

  • Choe, J.J.;Han, S.I.;Kim, H.M.;Kim, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.799-804
    • /
    • 2003
  • Friction phenomenon can be described as two parts which are pre-sliding and sliding regions. In motion of the sliding region, friction forces depend on the velocity of the system and are known as Coulomb, stick-slip, stribeck effect and viscous friction. The pre-sliding region, which is before breakaway, depends on the position of the system. The motion of friction in the sliding region can be described as the LuGre model. But the pre-sliding motion of friction, which has hysteresis characteristics in general, is not known widely. Therefore, an improved friction model, which can describe the motion of friction in the pre-sliding region, is proposed in this paper. And simulation and experimental results show the effectiveness of the proposed friction model for precise tracking control systems.

  • PDF

Study on the Integration Stability and the Accuracy of Some Friction Models for the Dynamic Analysis Using Recurdyn (RecurDyn을 이용한 동적 해석 시 마찰모델에 따른 적분 안정성 및 정확성 연구)

  • Yoo, Hong-Hee;Lee, Jun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1111-1117
    • /
    • 2008
  • During the dynamic analysis of a system, the Coulomb friction law is emploved to calculate the friction force. Since the static friction coefficient is only employed during the zero relative velocity, it is impractical to employ the coefficient during the dynamic analysis. To calculate the static friction force, therefore, some friction models have been developed. In this study, the integration stability and the accuracy of the models are investigated with some numerical examples. The effect of time step size during the numerical integration is also investigated. The numerical study shows that the friction model employed for most commercial codes is not as good as the one proposed in this study.

Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters (강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.781-788
    • /
    • 2009
  • Mechanical properties of steel-concrete interface were evaluated on the basis of experimental observations. The properties included bond strength, unbounded and bonded friction angles, residual level of friction angle, mode I fracture energy, mode II bonded fracture energy and unbonded slip-friction energy under different levels of normal stress, and shape parameters to define geometrical shape of failure envelope. For this purpose, a typical type of constitutive model of describing steel-concrete interface behavior was presented based on a hyperbolic three-parameter Mohr-Coulomb type failure criterion. The constitutive model depicts the strong dependency of interface behavior on bonding condition of interface, bonded or unbounded. Values of the interface parameters were determined through interpretation of experimental results, geometry of failure envelope and sensitivity analysis. Nonlinear finite element analysis that incorporates steel-concrete interface as well as material nonlinearities of concrete and steel were performed to predict the experimental results.

Implementation of A Robust Force Controller Using Stable NAC(Natural Admittance Control) Method (안정된 고유 어드미턴스 제어방식을 이용한 강인한 힘 제어기의 구현)

  • Kim, Seung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.9-19
    • /
    • 2002
  • An NAC(Natural Admittance Control) system design is presented for interaction controller that achieves high-performance and guarantees stability. The NAC can be classified as a particular flavor of impedance control similar to control schemes that have velocity compensator and force compensator. The NAC significantly improves the response characteristics when Coulomb friction is presented in One-link Robot System and guarantees stability when robot contacts with environment. Pragmatic rules for NAC synthesis are derived. It shows method to choose a target impedance for realizable force compensator. Important parameters are found experimentally. It is demonstrated, by the experimental result, that NAC algorithm is successful in rejecting Coulomb friction through velocity compensator and guarantees stability through force compensator. We implement an experimental set-up consisting of environment-generated one-link robot system and DSP system for controller development. We apply the natural admittance controller to the One-link robot system, and show the good performance on desired force control in case of contacting with arbitrary environment.

A Simple Constitutive Model for Soil Liquefaction Analysis (액상화 해석을 위한 간단한 구성모델)

  • Park Sung-Sik;Kim Young-Su;Byrne P. M;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.27-35
    • /
    • 2005
  • Several damages due to large displacement caused by liquefaction have been reported increasingly. Numerical procedures based on effective stress analysis are therefore necessary to predict liquefaction-induced deformation. In this paper, the fully coupled effective stress model called UBCSAND is proposed to simulate pore pressure rise due to earthquake or repeated loadings. The proposed model is a modification of the simple perfect elasto-plactic Mohr-Coulomb model, and can simulate a continuous yielding by mobilizing friction and dilation angles below failure state. Yield function is defined as the ratio of shear stress to mean normal stress. It is radial lines on stress space and has the same shape of Mohr-Columob failure envelope. Plastic hardening is based on an isotropic and kinematic hardening rule. The proposed model always causes plastic deformation during loading and reloading but it predicts elastic unloading. It is verified by capturing direct simple shear tests on loose Fraser River sand.

Sliding Friction Property of Angle Effect for Crosshatch Micro-grooved Pattern under Lubricated (마이크로 크기를 가지는 빗살무늬 그루우브 패턴의 빗살각도변화에 대한 실험적 마찰특성)

  • Kim, Seock-Sam;Chae, Youn-Ghun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.94-99
    • /
    • 2011
  • Micro-scale surface pattern has an benefit of tribological application under lubricated sliding contact. Therefore, a special pattern, that has to reduce the coulomb friction under contact, is considered to be necessary for improved efficiency of machines. The current study investigated the friction property of angle effect for micro-scale grooved crosshatch pattern on bearing steel surface using pin-on-disk type. The samples fabricated by photolithography process and then these are carry out the electrochemical etching process. We discuss the friction property due to the influence of hatched-angle on contact surface. We could be explained the lubrication mechanism for a Stribeck curve. It was found that the friction coefficient depend on an angle of the crosshatch on contact surface. It was thus verified that micro-scale crosshatch grooved pattern could affect the friction reduction.

Haptic Friction Display of a Hybrid Active/Passive Force Feedback Interface

  • An, Jin-Ung;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1673-1678
    • /
    • 2005
  • This paper addresses both theoretical and experimental studies of the stability of haptic interfaces during the simulation of virtual Coulomb friction. The first objective of this paper is to present an analysis of how friction affects stability in terms of the describing function method and the absolute stability theory. Two different feedback methods are introduced and are used to evaluate the analysis: an active force feedback, using a motor, and a passive force feedback, using controllable brake. The second objective of this paper is to present a comparison of the theoretical and experimental results. The results indicate that the sustained oscillations due to the limit cycle occur when simulating friction with an active force feedback. In contrast, a passive force feedback can simulate virtual friction without the occurrence of instability. In conclusion, a hybrid active/passive force feedback is proposed to simulate a highly realistic friction display.

  • PDF