액상화 해석을 위한 간단한 구성모델

A Simple Constitutive Model for Soil Liquefaction Analysis

  • 박성식 (브리티시 콜롬비아대학교 토목공학과) ;
  • 김영수 (경북대학교 공과대학 토목공학과) ;
  • ;
  • 김대만 (경북대학교 공과대학 토목공학과)
  • Park Sung-Sik (Dept. of Civil Engrg., Univ. of British Columbia) ;
  • Kim Young-Su (Dept. of Civil Engrg., Kyungpook National Univ.) ;
  • Byrne P. M (Dept. of Civil Engrg., Univ. of British Columbia) ;
  • Kim Dae-Man (Dept. of Civil Engrg., Kyungpook National Univ.)
  • 발행 : 2005.10.01

초록

액상화에 따른 지반의 과도한 변형으로 인한 피해가 자주 발생되고 있다. 그에 따른 지반의 움직임을 예측하기 위해서는 유효응력 개념에 기초한 수치해석 기법이 요구되어 진다. 본 연구에서는 지진 및 유사한 반복 하중에 따른 수압의 상승을 예측할 수 있는 연성(fully coupled) 유효응력 구성모델인 UBCSAND를 제안하였다. 제안된 모델은 간단한 완전탄소성모델인 Mohr-Coulomb을 변형한 형태로 마찰각(friction angle)과 팽창각(dilation angle)을 점진적으로 증가시킴으로써, 기존의 파괴상태내에서도 연속적인 소성변형 발생을 표현할 수 있다. 항복함수는 전단응력과 평균응력의 비인 $(\sigma'_1-\sigma'_3)/(\sigma'_1-\sigma'_3)$로 나타내며, 응력도의 원점에서 시작하는 무한개의 방사선을 의미한다. 따라서, Mohr-Coulomb의 파괴면과 같은 형태의 무수한 항복면을 가진다. 소성 경화법칙은 등방경화(isotropic hardening)와 이동경화(kinematic hardening)를 혼합한 형태를 이루고 있다. 재하(loading) 및 재재하(reloading)시에는 연속적인 소성 변형이 일어나나, 제하(unloading)시에는 탄성변형을 가정하였다. 제안된 모델은 느슨한 Fraser River 모래를 이용한 직접단순전단시험(Direct simple shear test)결과와 비교하여 검증하였다.

Several damages due to large displacement caused by liquefaction have been reported increasingly. Numerical procedures based on effective stress analysis are therefore necessary to predict liquefaction-induced deformation. In this paper, the fully coupled effective stress model called UBCSAND is proposed to simulate pore pressure rise due to earthquake or repeated loadings. The proposed model is a modification of the simple perfect elasto-plactic Mohr-Coulomb model, and can simulate a continuous yielding by mobilizing friction and dilation angles below failure state. Yield function is defined as the ratio of shear stress to mean normal stress. It is radial lines on stress space and has the same shape of Mohr-Columob failure envelope. Plastic hardening is based on an isotropic and kinematic hardening rule. The proposed model always causes plastic deformation during loading and reloading but it predicts elastic unloading. It is verified by capturing direct simple shear tests on loose Fraser River sand.

키워드

참고문헌

  1. Byrne, P.M., Park, S.-S., Beaty, M., Sharp, M., Gonzalez, L. and Abdoun, T. (2004), 'Numerical modeling of liquefaction and comparison with centrifuge tests', Canadian Geotechnical Journal, Vol.41, No.2, pp.193-211 https://doi.org/10.1139/t03-088
  2. Dafalias, Y. F. (1986), 'Bounding surface plasticity. I: Mathematical foundation and hypoplasticity', Journal of Engineering Mechanics, ASCE, Vol.112, No.9, pp.966-987 https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966)
  3. Finn, W. D. L. and Vaid, Y P. (1977), 'Liquefaction potential from drained constant volume cyclic simple shear tests', Proc. of the 6th World Conf. on Earthquake Engineering, Vol.3, pp.2157-2162
  4. Hardin, B.O. (1978), 'The nature of stress-strain behavior for soils', Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference on Earthquake Engineering and Soil Dynamics, Vol.1, pp.3-90
  5. Itasca (2000), FLAC, version 4.0. Itasca Consulting Group Inc., Minneapolis
  6. Kolymbas, D. (2000), Introduction to Hypoplasticity, Balkema, A. A
  7. Li, X. S. and Dafalias, Y. F. (2000), 'Dilatancy for cohesionless soils', Geotechnique, Vol.50, No.4, pp.449-460 https://doi.org/10.1680/geot.2000.50.4.449
  8. Negussey, D., Wijewickreme, D., and Vaid, Y.P. (1988), 'Constant volume friction angle of granular materials', Canadian Geotechnical Journal, 25(1), pp.50-55 https://doi.org/10.1139/t88-006
  9. Peacock, W.H. and Seed, H.B. (1968), 'Sand liquefaction under cyclic loading simple shear conditions', Journal of the Soil Mechanics and Foundations Division, 94(SM3), pp.689-708
  10. Prevost, J. H. (1985), 'A Simple Plasticity Theory for Cohesionless Frictional Soils', International Journal of Soil Dynamics and Earthquake Engineering, Vol.4, No.1, pp.9-17 https://doi.org/10.1016/0261-7277(85)90030-0
  11. Puebla, H., Byrne, P.M. and Phillips, R. (1997), 'Analysis of CANLEX liquefaction embankments: prototype and centrifuge models', Candian Geotechnical Journal, Vol.34, No.5, pp.641-657 https://doi.org/10.1139/cgj-34-5-641
  12. Rowe, P.W. (1962), 'The stress-dilatancy relation for static equilibrium of an assembly of particles in contact', In Proceedings of the Royal Society of London. Mathematical and Physical Sciences, Series A 269, pp.500-557
  13. Seed, H. B., Wong, R. T., Idriss, I. M. and Tokimatsu, K. (1986), 'Moduli and damping factors for dynamic analyses of cohesionless soils', Journal of Geotechnical Engineering, ASCE, Vol.112, No.11, pp.1016-1032 https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)
  14. Sriskandakumar, S. (2004). Cyclic loading response of Fraser River sand for validation of numerical models simulating centrifuge tests. MASc. Thesis, Department of Civil Engineering, University of British Columbia
  15. Vaid, Y.P. and Chern J.C. (1985), 'Cyclic and monotonic undrained response of saturated sands', Advances in the Art of Testing Soils under Cyclic Conditions, ASCE, pp.120-147
  16. Vermeer, P. A. (1984), 'Non-associated plasticity for soils, concrete and rock', HERON, Vol.29, No.3, pp.1-64
  17. Wan, R. G. and Guo, P. J. (1998), 'A simple constitutive model for granular soils: Modified stress-dilatancy approach', Computers and Geotechnics, Vol.22, No.2, pp.109-133 https://doi.org/10.1016/S0266-352X(98)00004-4
  18. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Paul, D.K., and Shiomi, T. (1990), 'Static and dynamic behavior of soils: a rational approach to quantitative solutions. Part I: fully saturated problems', In Proceedings of the Royal Society of London. Mathematical and Physical Sciences, Series A, 429: 285-309