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Wave Control Function and Friction Damping
of a Pile-Supported Floating Body
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1. INTRODUCTION

The floating body discussed in this study is a
2-D rectangular floating unit supported by four
vertical piles at its comers. Structures of this
type are frequently seen as floating piers for the
crafts in a small harbour. The movement in
some modes of motion of such a floating body is
fully or partially restricted by the piles. The
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authors (Kim et al. 1994) carried out a series of

its
The
showed that a certain

model tests on its wave control function,
and the
experimental results

motions loads on piles.
degree of initial constriction force which clamps
the floating unit in the horizontal direction can
effectively reduce the body motions and wave
This
may be due to the friction forces occurring

energy without increasing mooring forces.
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between the piles and the rollers installed in the
mooring equipments on the floating unit.

In this paper, we develop a numerical model
for the prediction of wave transformation and
floating body motions, where the friction force is
idealized as the Coulomb friction and linearized
into a damping force using the equivalent
damping coefficient. This linearization is verified
by comparing the results of motions between the
linear and nonlinear analysis of the equations of
motion. We further compare the calculation
results by the linear model with the experimental
results and discuss the effect of the friction
force or the constriction force on body motions

and wave energy dissipation.

2. THEORETICAL FORMULATION

2.1 Equations of Motion

Fig. 1 shows a schematic diagram of a floating
body moored to the piles with linear springs and
rollers. The friction between the rollers and the
piles is assumed to be the Coulomb friction that
gives constant friction force proportional to the
restoring force of the spring in the opposite

direction to the moving direction of the rollers.

|

Fig. 1 Schematic diagram of a floating body
supported by piles

Let three modes of motion in two dimensions
with respect to the centre of gravity G be sway,
heave and roll and express the displacements by
x, z and &, respectively.

The equations of motion are obtained as
follows assuming the small amplitude motion

under the excitation of sinusoidal waves:

sway: (m+M11 )x +M13 6 +N119£ +N13 6
= aF;cos(wt+e;)—2k(x— h,0)
(1
heave: (m+M22)z +N222 +Cpz
= aFjcos(wt+e;) —f& { Vi (s—h,6+x)
+Vo(s+h,0—x))
(2)
roll: (I+ M33)0 +M31x +N130 +N31x +C~;36

= aFycos (wt+es) +H —2h20+2h %)
—0.5/kB (Vi(s—h8+x)— Vo(s+h6—x)}

3)

where m and I are the mass and the inertia
moment of the floating body, and M and N are
the added mass and the damping coefficient,
respectively. C is the hydrostatic restoring force
coefficient, a is the wave amplitude, f is the
friction coefficient, 1s the phase lag, and
B’=B+2d. 'The numerals in the subscripts 1, 2
and 3

motion, sway, heave and roll, respectively. F* is

&€

indicate the corresponding modes of

the transfer function of wave force that is a
function of wave frequency like the added mass
and the damping coefficients. %, is the spring
constant and s is the initial displacement of the
spring defined as Fo= ks where F, is the initial
There

assumption here that the initial constriction must

constriction  force. i1s an important

be large enough not to detach the rollers from

the piles. This assumption is not always fulfilled
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in the experiments especially for the cases of
small constriction forces. The coefficients V, and
V: in Egs. (2) and (3) take the value of 1 or -1
according to the moving direction of the rollers.

Thus these are given as
Vi=(z+0B/2) | 2+ 6B/2] ,
Vo=(2—0B/2)] | z— 6B /2|

2.2 Nonlinear Analysis

We introduce the following dimensionless
variables to treat the equations of motion in

dimensionless form:

=xla , Z=z/la, O=6Bla, t=wt
pi= Mp/(m+M)B,  py= M3 B/(1+ M)
/il]:Nll/(m+Mll)w' A13=N13/(m+M”)Bw7
/132=N22/(m+M22)a), A31:N3lB/(I+M33)CU,
AgJ:N\B/(I‘*'M:B)(D, C11=2k/(m+M”)w2,
§l:l=_2khg/(m+M11)B(D2, CZZZ sz/(M+M22)a)2
a,= F/(m+M)o’, a;= F3/(m+Myp)a?,
(13=F§B/(1+M33)w2

Furthermore, we divide the velocity phase
plane Z—® into the following four regions
within which the signs of Vi and V. are
constant:
region I: Z=210 | B/2B (Vi=V,=1)
region 2 O@B/B=2|2Z| (V,=1, Vo=-1)
region 3 Z< ~| @ | B/2B (V,=V,=—1)

region 4 @B/B< —-2|2] (V,=-1, Vo=1)

where the dots indicate the differentiation with

respect to time. In addition to the parameters
shown above, the following dimensionless
parameters that take different expressions in
each region are defined where the numerals in
the superscript denote the region number:

G =eP=0, ¢P=2m/(m+Mp)a?, ¢§ =~
() =83=0, & =—2fkh/(m+My)Bo’,
==t
=~ (2kh,B— fEBB) /(I + Myp)a® |
0 =—2kB | (I+My) o’

) =— (2kh,B+ kBB )| (I+ M) &

(4) C(Z)

0 = (Cy +2kH: — fRR B/ (I+ M),
¢2 = (Cyy + 260D [ (I+ M)

¢ = (Cy +2kh2 + fh B/ (I+ M)
§(4) {(2)

=—2/Fy/(m+Mpas® , 7?=r"=0
75 =—ys"
r=9P=0 , 7?=—fFBB[(m+My)ac’

(4 (2)
73 = 73

Using these parameters we obtain the
dimensionless equation of motions In matrix
form, where n takes 1 to 4:

1 0 pp X An 0 Ay X

010 0 A 0

0 1 ) Ay 0 Ay e
H3y [C] 31 B\ e )
[ ST R 4T 3 aycos(r+e;) 0

Ur e ]= azcos(c+ep)|+ | 7"
uroo oy aycos(rteg)| | ("
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Fig. 2 Divided regions and boundaries for the
nonlinear calculation

Since the equations of motion are linear
differential equations within each region, we can
obtain the analytical solution in each region by
specifying the initial displacements and velocities
in the three modes of motion. Thus as shown in
Fig. 2 we proceed with the calculation starting
from any point on the velocity phase plane
Z—® . The subsequent motions are calculated
at successive time steps from the corresponding
analytical solutions up to the instant at which
the locus reaches the boundary of the region.
The analytical solutions for the subsequent
then the
determined from the values of

region is used, with unknown
coefficients
displacements and velocities at the cross-over.
This procedure is extended over the required
duration. All the calculation performed in this
study take the initial conditions as (Z,&)=(0,0)
and (Z,0)=(0,0.1)

different initial conditions could give different

in the region 1 although

solutions due to the nonlinearity. The Laplace

transformation is used to get analytical

solutions by the help of Mathematica. Fig. 3
shows an example of the locus, which shows
higher harmonic components due to the friction
effect.

10

Fig. 3 Locus on velocity phase plane

In this nonlinear analysis, the wave exciting
and the damping
coefficients must be calculated beforehand by

force, the added mass
using the linear potential theory. The nonlinear
analysis is thus unable to predict the wave field
directly. Furthermore, the conversion char-

acteristics at the cross-over point become
sometimes worse as the initial constriction or
the friction factor become large. We therefore
use the nonlinear analysis for only verifying the
validity of the linearized theory referred to in the

next section.

2.3 Linearization of Nonlinear Friction Force using
Equivalent Damping Coefficient

The Coulomb friction force is described as a
step function of velocity as shown in Fig. 4 (a).
We here linearize this nonlinear function as a
straight line shown in Fig. 4 (b), where we
replace the friction force with the linear damping
force due to a dash-pot. To determine the slope
of the line or the damping coefficient, we equate
the total dissipating energy during one wave
period due to the friction force with that due to
the damping force.

The total dissipating energy E; due to the
friction force Fy during one wave period T is
calculated as
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T 2 Foy 4F v
By= [ Fpdt =4 [ "2 cospdp = <S00
(6)
F F
4
(a) Rotler (b) dash-pot
Fo c
>y o ! —
£ {\

Fig. 4 Coulomb friction (a) and its linearization (b)

On the other hand, the total dissipating energy
Eq due to the damping force Fg is

cVin
1)

)
To equate E; with E4, we obtain the equivalent

T 27 2
E, = fo Fyudt = fo %coszode =

damping coefficient ¢ as

c =A4F /vy (8)

We here notice that the equivalent damping
coefficient ¢ is determined by the magnitude of
the friction force F, and the velocity amplitude
of the rollers v.. However, the velocity of the
rollers is in turn a function of the damping
Thus

assume a damping coefficient and calculate the

coefficient. in the calculation we first
first approximate value of v, and then modify
the damping coefficient by using Eq. (8). This
procedure is iterated until the steady-state value
of ¢ is obtained.

Considering the present situation shown in
Fig. 7, however, there are two rollers on both
sides of the floating body. We thus determine
the

taneously on both sides.

equivalent damping coefficients simul-
Let the equivalent
damping coefficients be ¢ and o on the left and

right hand sides, respectively. The friction terms

on
be

the right hand sides in Egs. (2) and (3) can
written as

—fR{Vi(s—h0+x)+ Vy(s+hO—x))

= —c(z+6B/2)—c(2~6B/2) (9

—fhB{V(s—h0+x)— Vys+h,6—x)}/2

=—B(z+0B[2)/2—cz—6B/2)/2
(10)

If we here let bn=ci+cy, bu=bp=B{ci-c)/2,
byp=B*(ci*c»)/4, Bgs. (2) and (3) vyield the
following differential equations:

(m+M22) Z. ‘+‘(N22+b22)2 +b236 +C222

= aF," cos(wt+e;) (11)

(I+Mgy 6 +Msyx + (Nayy+by3) 0 + Ny x
+b322' +C330 :aF3‘COS((I)t+E3)

+k(—2h% 0+2hx) (12)

2.4 Numerical Procedure

The linear equations of motion, Eqs. (1), (11),
and (12), can be used as the dynamic boundary
conditions when solving the boundary-value
problem of the wave field. Figure 11 shows a
schematic diagram of a vertical section of the
The

numerical method used in the calculation is one

floating body used in the experiments.

of the eigenfunction expansion methods proposed
by Yoshida et al. (1990). We first divide the
water region of interest into five sub-regions as
shown in Fig. 5 and then apply the continuity
conditions of pressure and velocity on the
vertical boundaries between the regions. Solving
the equations of motions and the continuity

conditions simultaneously, we finally obtain the
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of

unknown coefficients of the velocity potential in

amplitudes of motions and the values
each region. As mentioned above, however, the
coefficients by, bys, by and bz that represent the
equivalent damping are also unknown. We first
let all these coefficients be zero as first approxi-
mations and solve the equations and get the
second approximations through Eq. (8). Steady-
state solutions can be obtained in several times

of such iterations.

Z)
m ~ roller ,<——J-L—> "_‘
1}‘1‘\: - -~
—_— T x
o) L h
5 [« = ﬂ.

Fig. 5 Subdivision of the fluid region

3. RESULTS

3.1 Comparison between Linear and Nonlinear
Analysis

Fig. 6 shows the response of roll amplitudes
as a function of wave period T, where the width
and the draft of the rectangular floating body are
0.36m" and 0.Im, respectively, and the water
depth A=0.5m, k=10kgf/cm, f=0.2 and Fo=0.5kgf.
The results from the linear model with and
without damping are compared to those from the
nonlinear model. The linear model considering
the equivalent damping show good agreement
with the nonlinear model. We also notice the
significant effect of the friction damping at the

resonant period of the roll motion.

30

Roll
25 -
-— Linear (withcut damping}

—— Linear (with equivalent damping)

204 ® Nonlinear

164

1.8
T (sec)

Fig. 6 Comparison of roll amplitudes between
linear and nonlinear analysis
3.2 Effects of Friction Damping on Wave Energy

Dissipation and Motions

Fig. 7 to Fig. 9

between the calculations and the experiments in

show the comparisons

terms of the transmission coefficient K, the
121 161,
respectively, where the initial constriction force
Rx is 3.5kgf, i.e. the initial deflection of the leaf

spring s is 0.123cm. We determined the value of

heave and roll amplitudes and

the friction coefficient f as 0.2 that corresponds
to the maximum static resistance of the roller
the

calculated results show some distinct peaks in

against its rolling. From these figures,
the response curves, whereas the experimental
results show gradual variation over the tested
range of B/L, where L is the wave length. The
discrepancy between them is therefore signi-
ficant around the B/L at which the calculated
response curves show the peaks. This may be
partly because the friction force between the
rollers and the piles is not so simple as it can be
idealized as the Coulomb friction and partly
because the assumptions used in the model such
as small amplitude motion and no detachment of
the rollers from the piles may collapse around

the frequency showing the peaks.
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Fig. 9 Roll amplitude

Fig. 10 shows the energy dissipation rate E
defined as E. = 1 - K’ - K, where K: and K,
are the transmission and reflection coefficients,
respectively. Experimental results show large
energy dissipation around B/L=0.2 for the cases
initial deflections of leaf springs,
s=0.211cm, which

of smaller

s=0.123 and respectively

correspond to the initial constriction forces Ry
35 and 6.0kgf. On the hand, the
calculations show completely opposite results;

other

the largest initial constriction, s=0.518cm, gives
the greatest energy dissipation although the
variation characteristics of the response curves
are similar to those of the experiments.

1.0 .

Cal. Exp. (em)|-]

0.8 — o s=0.123|

y e A S=0211]

5 0.6 X5 |— O $=0.518)
0.4 | —&logi N 0
Jgifi gl o4 o

0.2 SO - R —
7/ T A e S -
0042 B

T
0.0 0.1 02 03 04 03 06 07 08 09 1.0
B/L

Fig. 10 Energy dissipation rate for three different
initial constriction forces

Fig. 11 shows the dependencies of K; K, and
E. on the initial deflection of the spring s or the
the
experimental results are plotted for the cases
B/L=0.14 and 0.16, compared with the results
calculated for B/L=0.15. As have seen in Fig. 10,
the energy dissipation rate in the experiments
with the

calculated results increase as s increases. It is

initial constriction force. In this figure,

decreases s increasing, whereas
seen that this opposite tendency corresponds to
the variation of the reflection coefficient. In Fig.
12, the amplitudes of heave and sway motions are
plotted as functions of s, which shows similar
tendency but significant discrepancy between the
experiments and the calculations. Fig. 13 and Fig.
14 are the similar figures to Figs. 11 and 12,
respectively, except that the calculations are
carried out using larger friction coefficient f=0.5.
The response curves in Fig. 13 are significantly
different from those in Fig. 11. The calculation

results show that the optimum constriction force
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to maximize the energy dissipation rate exists
around s=0.3 at which the reflection coefficient
shows the minimum. As seen in the figure, the
increase in the friction coefficient somewhat
improve the agreement with the experimental

results, which is also seen in Fig. 14.

Exp. Caj.
0.14 0.16 0.15 (BL)

0.8 o e — Kt
ol a a e Kr

o) 0.6 r_r\—\_. o a - E

o e [t a :

o 04 ut
P T R n

0.2 -4 e
4 A
0.0 T —T t !
0.1 0.2 0.3 0.4 0.5 0.6 Q.7
S (cm)

Fig. 11 Transmission coefficient Kt, reflection
coefficient Kr and energy dissipation
rate Er as functions of initial deflection
of spring s (f=0.2)
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@t Y \\ A A e Roll
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0.0 $
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Exp. Cal.
0.14 0.16 0.15 (B/L)
1.5 TT— O @ -~ Heave
A A e Roll
@ X
= 1.0
N A b,
0.5 1 2 """
a
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0.0 i Té |
Q.1 0.2 0.3 0.4 0.5 0.6 0.7
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Fig. 12 Heave and roll amplitudes as functions of

initial deflection of spring s (~0.2)

Exp. Cal.
0.14 0.16 0.15 (B/L)
0.8 - < e ~Ki
. P of a a o Kr
+ ] -4 ® o s - EL
[SX —
4 ;] K
= 0.4 S
M . -
-ia
0.2 A
A
7y 5 . .
0.0 B T
0.1 0.2 0.3 0.4 0.5 0.6 Q.7
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Fig. 13 Transmission coefficient Kt, reflection
coefficient Kr and energy dissipation
rate Er as functions of initial deflection
of spring s (f=0.5)

Fig. 14 Heave and roll amplitudes as functions of
initial deflection of spring s (f=0.5)

4. CONCLUDING REMARKS

In this paper, the nonlinear and linear models
are proposed for the calculation of wave
transformation and the motions of a pile-
supported floating body.

occurting between the rollers and the piles are

The friction forces

idealized as the Coulomb friction and linearized
by using the equivalent damping coefficient.
Although the models must be further modified
by examining the characteristics of the friction
forces in detail, it is at least confirmed that the
significant energy dissipation can be expected
for such pile-supported floating structures as
treated in this study.
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