• Title/Summary/Keyword: Cost of uniformity

Search Result 173, Processing Time 0.029 seconds

Design and Implementation of MODA Allocation Scheme based on Analysis of Block Cleaning Cost (블록 클리닝 비용 분석에 기초한 MODA할당 정책 설계 및 구현)

  • Baek, Seung-Jae;Choi, Jong-Moo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.11
    • /
    • pp.599-609
    • /
    • 2007
  • Due to the restrictions of Flash memory such as overwrite limitation and write/erase operational unit differences, block cleaning is required in Flash memory based file systems and known as a key factor on the performance of file systems. In this paper, we identify three parameters, namely utilization, invalidity and uniformity, and analyze how the parameters affect the cost of block cleaning. The analysis show that as uniformity degrades, the cost of block cleaning increases drastically. To overcome this problem, we design a new modification-aware(MODA) page allocation scheme that strives to keep uniformity high by separating frequently-updating data from infrequently-updating data. Real implementation experiments conducted on an embedded system show that the MODA scheme can actually enhance uniformity of Flash memory, which consequently leads to reduce the cost of block cleaning with an average of 123%, compared to the traditional sequential allocation scheme that is used in YAFFS.

Design of inductively couple dplasma ashing chamber (유도 결합형 플라즈마를 이용한 감광제 제거 반응로의 설계)

  • 김철식;김철호;이현중;이용규;배경진;이종근;박세근
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.339-342
    • /
    • 1998
  • Plasma etching of photoresist needs high etch rate, good uniformity and rae, good uniformity and low damage in low cost. ICP asher is expected to satisfy these requriement for next eneration semiconductor devices. ICPsimulator has been used to design the ashing chamber to redcue the development time and cost, and its results have been verified by QMS, OES and langmuir probe measurments. Plasma characteristics are monitored in terms of RF power and chamber pressure.

  • PDF

Synthesis of Spatial Results to Recommend a Preferred Alternative

  • Lim, Kwang-Suop;Kang, Shin-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.798-802
    • /
    • 2010
  • The integration of GIS and fuzzy MCDA(Multi-Criteria Decision Analysis) allows the engineer to determine the preferred alternative for each spatial location in the study area. The next step is to recommend to the final decision makers a single flood management alternative for the entire region. Note that if the study area is large, it might be possible to use the kind of information to recommend different alternatives for different portions of the region. However, for this study it is assumed that only a single alternative will be used. In this study, a "cost of uniformity" metric is proposed that allows decision makers to compute the impact of selecting a single alternative for the entire floodplain. This metric represents the increase in the average distance metric value as compared to the spatially diverse solution from the MCDA and GIS analysis. The results could be applied to any region of the floodplain as desired. Whether the decision makers decide to apply these calculations to the entire floodplain or to specific important regions within the floodplain, an analysis of the increases in the cost of uniformity provides an integrated way for the decision maker to rank the alternatives. This should provide an improvement in their engineering analysis.

  • PDF

Study on Optimization of the Vacuum Evaporation Process for OLED (Organic Electro-luminescent Emitting Display) (유기EL 디스플레이의 진공 성막 공정의 최적화에 관한 연구)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • In OLED vacuum evaporation process, the essential requirements include good uniformity of the film thickness over a glass substrate. And, it is commercially significant to improve the consuming efficiency of material of the evaporant which is deposited on the substrate because of high price of organic materials. In this paper, to achieve the better thickness uniformity and the better organic material consuming rate, a process optimization algorithm was developed by understanding vacuum evaporation process parameters that affect the material consuming efficiency and the uniformity of film thickness. Based on the method developed in this study, the vacuum evaporation process of OLED was successfully controlled. The developed method allowed the manufacture of high quality OLED displays with cheaper fabrication cost.

  • PDF

Temperature Uniformity Control of Wafer During Vacuum Soldering Process (진공 솔더링 공정 중 웨이퍼 온도균일화 제어)

  • Kang, Min Sig;Jee, Won Ho;Yoon, Wo Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2012
  • As decreasing size of chips, the need of wafer level packaging is increased in semi-conductor and display industries. Temperature uniformity is a crucial factor in vacuum soldering process to guarantee quality of bonding between chips and wafer. In this paper, a stepwise iterative algorithm has been suggested to obtain output profile of each heat source. Since this algorithm is based on open-loop stepwise iterative experimental technique, it is easier to implement and cost effective than real time feedback controls. Along with some experiments, it was shown that the suggested algorithm can remarkably improve temperature uniformity of wafer during whole heating process compared with the ordinary manual trial-and error method.

Oxide CMP Removal Rate and Non-uniformity as a function of Slurry Composition (슬러리의 조성에 따른 산화막 CMP 연마율과 균일도 특성)

  • Ko, Pi-Ju;Lee, Woo-Sun;Choi, Kwon-Woo;Shin, Jae-Wook;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.41-44
    • /
    • 2003
  • As the device feature size is reduced to the deep sub-micron regime, the chemical mechanical polishing (CMP) technology is widely recognized as the most promising method to achieve the global planarization of the multilevel interconnection for ULSI applications. However, cost of ownership (COO) and cost of consumables (COC) were relatively increased because of expensive slurry. In this paper, the effects of different slurry composition on the oxide CMP characteristics were investigated to obtain the higher removal rate and lower non-uniformity. We prepared the various kinds of slurry. In order to save the costs of slurry, the original slurry was diluted by de-ionized water (DIW). And then, alunima abrasives were added in the diluted slurry in order to promote the mechanical force of diluted slurry.

  • PDF

[ $SiO_2$ ] CMP Characteristic by Additive (첨가제에 따른 $SiO_2$ CMP 특성)

  • Lee, Woo-Sun;Ko, Pi-Ju;Choi, Kwon-Woo;Shin, Jae-Wook;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.378-381
    • /
    • 2003
  • The chemical mechanical polishing (CMP) has been widely accepted for the global planarization of multi-layer structures in semiconductor manufacturing However, cost of ownership (COO) and cost of consumables (COC) were relatively increased because of expensive slurry. In this paper, the effects of different slurry composition on the oxide CMP characteristics were investigated to obtain the higher removal rate and lower non-uniformity. We prepared the various kinds of slurry. In order to save the costs of slurry, the original slurry was diluted by de-ionized water (DIW). And then, alunima abrasives were added in the diluted slurry in order to promote the mechanical force of diluted slurry.

  • PDF

Improvement of evaporating efficiency for OLED mass-fabrication

  • Lee, Eung-Ki;Jeong, Seong-Ho;Jeong, Seok-Heon;Huh, Myung-Soo;Lee, Sung-Ho;Chung, Sung-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.728-731
    • /
    • 2002
  • For the evaporation process, thickness uniformity is of great practical importance. And, it is commercially significant to improve the efficiency of material of the evaporant which is deposited on the substrate because of high price of organic materials. To achieve the better thickness uniformity and the higher evaporating efficiency, Samsung SDI has introduced the new concept of the asymmetric evaporation technology for depositing evener and cheaper organic layers. Based on the developed method, the uniformity of the organic layer thickness can be successfully controlled. Furthermore, the very high efficiency may allow the OLED displays be manufactured with the lower cost.

  • PDF

A Study on the Uniformity Improvement of Residual Layer of a Large Area Nanoimprint Lithography

  • Kim, Kug-Weon;Noorani, Rafigul I.;Kim, Nam-Woong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.19-23
    • /
    • 2010
  • Nanoimprint lithography (NIL) is one of the most versatile and promising technology for micro/nano-patterning due to its simplicity, high throughput and low cost. Recently, one of the major trends of NIL is large-area patterning. Especially, the research of the application of NIL to TFT-LCD field has been increasing. Technical difficulties to keep the uniformity of the residual layer, however, become severer as the imprinting area increases. In this paper we performed a numerical study for a large area NIL (the $2^nd$ generation TFT-LCD glass substrate ($370{\times}470$ mm)) by using finite element method. First, a simple model considering the surrounding wall was established in order to simulate effectively and reduce the computing time. Then, the volume of fluid (VOF) and grid deformation method were utilized to calculate the free surfaces of the resist flow based on an Eulerian grid system. From the simulation, the velocity fields and the imprinting pressure during the filling process in the NIL were analyzed, and the effect of the surrounding wall and the uniformity of residual layer were investigated.

Enhancement of SiO2 Uniformity by High-Pressure Deuterium Annealing (고압 중수소 어닐링을 통한 SiO2 절연체의 균일성 개선)

  • Yong-Sik Kim;Dae-Han Jung;Hyo-Jun Park;Ju-Won Yeon;Tae-Hyun Kil;Jun-Young Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.148-153
    • /
    • 2024
  • As complementary metal-oxide semiconductor (CMOS) is scaled down to achieve higher chip density, thin-film layers have been deposited iteratively. The poor film uniformity resulting from deposition or chemical mechanical planarization (CMP) significantly affects chip yield. Therefore, the development of novel fabrication processes to enhance film uniformity is required. In this context, high-pressure deuterium annealing (HPDA) is proposed to reduce the surface roughness resulting from the CMP. The HPDA is carried out in a diluted deuterium atmosphere to achieve cost-effectiveness while maintaining high pressure. To confirm the effectiveness of HPDA, time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM) are employed. It is confirmed that the absorbed deuterium gas facilitates the diffusion of silicon atoms, thereby reducing surface roughness.