DOI QR코드

DOI QR Code

Enhancement of SiO2 Uniformity by High-Pressure Deuterium Annealing

고압 중수소 어닐링을 통한 SiO2 절연체의 균일성 개선

  • Yong-Sik Kim (Department of Semiconductor Engineering, Daelim University College) ;
  • Dae-Han Jung (School of Electronics Engineering, Chungbuk National University) ;
  • Hyo-Jun Park (School of Electronics Engineering, Chungbuk National University) ;
  • Ju-Won Yeon (School of Electronics Engineering, Chungbuk National University) ;
  • Tae-Hyun Kil (School of Electronics Engineering, Chungbuk National University) ;
  • Jun-Young Park (School of Electronics Engineering, Chungbuk National University)
  • 김용식 (대림대학교 반도체학과) ;
  • 정대한 (충북대학교 전자공학부) ;
  • 박효준 (충북대학교 전자공학부) ;
  • 연주원 (충북대학교 전자공학부) ;
  • 길태현 (충북대학교 전자공학부) ;
  • 박준영 (충북대학교 전자공학부)
  • Received : 2023.11.03
  • Accepted : 2023.11.20
  • Published : 2024.03.01

Abstract

As complementary metal-oxide semiconductor (CMOS) is scaled down to achieve higher chip density, thin-film layers have been deposited iteratively. The poor film uniformity resulting from deposition or chemical mechanical planarization (CMP) significantly affects chip yield. Therefore, the development of novel fabrication processes to enhance film uniformity is required. In this context, high-pressure deuterium annealing (HPDA) is proposed to reduce the surface roughness resulting from the CMP. The HPDA is carried out in a diluted deuterium atmosphere to achieve cost-effectiveness while maintaining high pressure. To confirm the effectiveness of HPDA, time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM) are employed. It is confirmed that the absorbed deuterium gas facilitates the diffusion of silicon atoms, thereby reducing surface roughness.

Keywords

Acknowledgement

This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-001).

References

  1. C. Hu, Proc. IEEE, 81, 682 (1993). doi: https://doi.org/10.1109/5.220900
  2. Q. Xie, J. Xu, and Y. Taur, IEEE Trans. Electron Devices, 59, 1569 (2012). doi: https://doi.org/10.1109/TED.2012.2191556
  3. A. B. Sachid, M. C. Chen, and C. Hu, IEEE Trans. Electron Devices, 64, 1861 (2017). doi: https://doi.org/10.1109/TED.2017.2664798
  4. N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, IEEE Electron Device Lett., 27, 383 (2006). doi: https://doi.org/10.1109/LED.2006.873381
  5. D. H. Wang and J. Y. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 50 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.1.8
  6. K. S. Lee, W. C. Shin, J. W. Yeon, and J. Y. Park, Microelectron. Reliab., 145, 114995 (2023). doi: https://doi.org/10.1016/j.microrel.2023.114995
  7. K. S. Lee, B. D. Yang, and J. Y. Park, IEEE Trans. Electron Devices, 70, 2042 (2023). doi: https://doi.org/10.1109/TED.2023.3249650
  8. Y. K. Choi, T. J. King, and C. Hu, IEEE Trans. Electron Device, 49, 436 (2002). doi: https://doi.org/10.1109/16.987114
  9. O. Wood, C. S. Koay, K. Petrillo, H. Mizuno, S. Raghunathan, J. Arnold, D. Horak, M. Burkhardt, G. McIntyre, Y. Deng, B. La Fontaine, U. Okoroanyanwu, T. Wallow, G. Landie, T. Standaert, S. Burns, C. Waskiewicz, H. Kawasaki, J.H.C. Chen, M. Colburn, B. Haran, S.S.C. Fan, Y. Yin, C. Holfeld, J. Techel, J. H. Peters, S. Bouten, B. Lee, B. Pierson, B. Kessels, R. Routh, and K. Cummings, Proc. SPIE Advanced Lithography (San Jose, United States, 2010) p. 7636. doi: https://doi.org/10.1117/12.847049
  10. T. Hiramoto, Nat. Electron., 2, 557 (2019). doi: https://doi.org/10.1038/s41928-019-0343-x
  11. D. H. Jung, K. S. Lee, and J. Y. Park, J. Semicond. Technol. Sci., 21, 334 (2021). doi: https://doi.org/10.5573/JSTS.2021.21.5.334
  12. N. Loubet, T. Hook, P. Montanini, C. W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S. C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M. H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, Proc. 2017 Symposium on VLSI Technology (IEEE, Kyoto, Japan, 2017), p. T230. doi: https://doi.org/10.23919/VLSIT.2017.7998183
  13. M. Domke, G. Piredda, J. Zehetner, and S. Stroj, J. Laser Micro/Nanoeng., 11, 100 (2016). doi: https://doi.org/10.2961/jlmn.2016.01.0019
  14. D. H. Jung, W. C. Shin, M. K. Kim, J. Y. Ku, D. H. Wang, K. S. Lee, and J. Y. Park, IEEE Trans. Device Mater. Reliab., 22, 457 (2022). doi: https://doi.org/10.1109/TDMR.2022.3194504
  15. J. Y. Ku, K. S. Lee, D. H. Jung, D. H. Wang, S. Oh, K. Lee, B. Cho, H. Bae, and J. Y. Park, IEEE Trans. Device Mater. Reliab., 23, 276 (2023). doi: https://doi.org/10.1109/TDMR.2023.3270920
  16. D. H. Wang, S. S. Yoon, J. Y. Ku, D. H. Jung, K. S. Lee, D. Kim, and J. Y. Park, IEEE Trans. Device Mater. Reliab., 23, 297 (2023). doi: https://doi.org/10.1109/TDMR.2023.3275947
  17. J. Y. Ku, J. M. Yu, D. H. Wang, D. H. Jung, J. K. Han, Y. K. Choi, and J. Y. Park, IEEE Trans. Electron Devices, 70, 3958 (2023). doi: https://doi.org/10.1109/TED.2023.3278626
  18. T. Smith, D. Boning, S. Fang, G. Shinn, and J. Stefani, Proc. 1999 4th International Workshop on Statistical Metrology (Cat. No.99TH8391) (IEEE, Kyoto, Japan, 1999) p. 46. doi: https://doi.org/10.1109/IWSTM.1999.773193
  19. J. M. Yu, J. Y. Park, T. J. Yoo, J. K. Han, D. H. Yun, G. B. Lee, J. Hur, B. H. Lee, S. Y. Kim, B. H. Lee, and Y. G. Choi, IEEE Trans. Electron Devices, 67, 3903 (2020). doi: https://doi.org/10.1109/TED.2020.3008882
  20. K. Hess, I. C. Kizilyalli, and J. W. Lyding, IEEE Trans. Electron Devices, 45, 406 (1998). doi: https://doi.org/10.1109/16.658674
  21. M.C.M. Lee and M. C. Wu, J. Microelectromech. Syst., 15, 338 (2006). doi: https://doi.org/10.1109/JMEMS.2005.859092
  22. N. Sato and T. Yonehara, Appl. Phys. Lett., 65, 1924 (1994). doi: https://doi.org/10.1063/1.112818