• Title/Summary/Keyword: Corrosion Damage

Search Result 618, Processing Time 0.025 seconds

A Study on the Flexural Capacity of Rectangular Section Wood Using Synthetic Resins (합성수지를 이용한 사각단면 목재의 휨 보강 성능에 관한 연구)

  • Park, Kwang-Seob;Kang, Pyeong-Doo;Ha, Jong-Han;Park, Sung-Moo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.106-114
    • /
    • 2009
  • The basis principle of conservation about deterioration and corrosion of cultural assets building is the archetype maintenance, and should not make a factitious damage mistake by repair. Accordingly, conservation processing method using synthetic resins is embossed. The purpose of this paper is about flexural capacity of rectangular section wood using synthetic resins, the 11 specimens are manufactured and made an experiment about reinforcement length, ratio, material strength, direction of synthetic resins as variable. The results of this paper has shown that flexural reinforcement of wood by synthetic resins are efficient and found the possibility of using.

Performance evaluation of in-service open web girder steel railway bridge through full scale experimental investigations

  • Sundaram, B. Arun;Kesavan, K.;Parivallal, S.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.255-268
    • /
    • 2019
  • Civil infrastructures, such as bridges and tunnels are most important assets and their failure during service will have significant economic and social impact in any country. Behavior of a bridge can be evaluated only through actual monitoring/measurements of bridge members under the loads of interest. Theoretical analysis alone is not a good predictor of the ability of a bridge. In some cases, theoretical analyses can give less effect than actual since theoretical analyses do not consider the actual condition of the bridge, support conditions, level of corrosion and damage in members and connections etc. Hence actual measurements of bridge response should be considered in making decisions on structural integrity, especially in cases of high value bridges (large spans and major crossings). This paper describes in detail the experimental investigations carried out on an open web type steel railway bridge. Strain gages and displacement transducers were installed at critical locations and responses were measured during passage of locomotives. Stresses were evaluated and extrapolated to maximum design loading. The responses measured from the bridge were within the permissible limits. The methodology adopted shall be used for assessing the structural integrity of the bridge for the design loads.

Evaluation of the Properties of an Environment-Friendly De-icing Agent Based on Industrial By-Products (산업부산물을 활용한 친환경제설제의 특성평가)

  • Heo, Hyung-Seok;Lee, Byung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.132-139
    • /
    • 2017
  • A huge amount of de-icing agent is sprayed during winter to promote traffic safety in cold regions, and the quantity of de-icing agent sprayed has increased each year. The main ingredients in commonly used de-icing agents are chlorides, such as calcium chloride($CaCl_2$) and sodium chloride(NaCl). While calcium chloride is mostly used in Korea and sodium chloride is usually used in the U.S. and Japan, all de-icing agents include chloride ions. The chlorides included in sprayed calcium chloride-based de-icing agents have severe adverse effects, including the corrosion of reinforcing steels through salt damage by infiltrating into road structures, reduced structural performance of pavement or damage to bridge structures, and surface scaling, in combination with freezing damage in winter, as well as water pollution. In addition, the deterioration of paved concrete road surface that occurs after the use of calcium chloride-based de-icing agent accelerates the development of visual problems with traffic structures. Therefore, the present study was performed to prepare an environment-friendly liquid de-icing agent through a reaction between waste organic acids and calcium-based by-products, which are industrial by-products, and to analyze the properties of the de-icing agent in order to evaluate its applicability to road facilities.

Damage Conditions and Assessment for Cut Slope Structures due to Acid Rock Drainage (산성암반배수에 의한 절취사면 구조물의 피해 현황과 평가)

  • Lee Gyoo Ho;Kim Jae Gon;Park Sam-Gyu;Lee Jin-Soo;Chon Chul-Min;Kim Tack Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.83-92
    • /
    • 2005
  • The aim of this study was to investigate damage conditions of cut slope structures due to acid rock drainage (ARB) and to assess the acid production potential of various rocks. Acid rock drainage is produced by the oxidation of sulfide minerals contained in coal mine zone and mineralization belt of Pyeongan supergroup and Ogcheon group, pyrite-bearing andesite, and Tertiary acid sulfate soils in Korea. Most of cut slopes producing ARB have been treated with shotcrete to reduce ARD. According to the field observations, ARD had an adverse effect on slope structures. The corrosion of shotcrete, anchors and rock bolts and the bad germination and growth diseases of covering plants due to ARD were observed in the field. The concentration of heavy metals and pH of ARD from cut slope exceeded the environmental standard, indicating a high potential of environmental pollution of surrounding soil, surface water and ground water by the ARD. According to acid base accounting (ABA) of the studied samples, hydrothermally altered volcanic rocks, tuffs, coaly shales, tailings of metallic mine had a relatively high potential of acid production but gneiss and granite had no or less acid production potential. It is expected that the number of cut slopes will increase hereafter considering the present construction trend. In order to reduce the adverse effect of ARD in construction sites, we need to secure the data base for potential ARD producing area and to develop the ARD reduction technologies suitable.

Analysis of Behavior due to Tendon Damage for Maintenance of PSC I Girder Bridge (PSC I 거더교 유지관리를 위한 긴장재 손상에 따른 거동 분석)

  • Jongho Park;Jinwoong Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.53-60
    • /
    • 2024
  • Prestressed concrete (PSC) bridges are vulnerable to corrosion and fracture of tendons, and in particular, structures using the internal post-tensioned with grouted system have difficulties in maintenance due to limitations of inspection. In this study, the actual behavior of PSC I girder bridge was analyzed according to tendon damage. The target PSC I girder bridge, an decommissioned highway bridge of upper and lower bridges, had the service period of 33 years and 20 years, respectively. Deflection and concrete strain were measured according to the location of damaged tendon and loading method. Regardless of the age of the bridge, its structural performance decreased when the damaged tendon was closer to the center of the girder. The change in behavior increased as the truck load approached to the girder where the tendon cut. If the load was applied to the adjacent girder where the tendon was cut, the structural performance was likely to be maintained due to the influence of the entire structural system. The change in deflection was difficult to observe visually, while the concrete strain exceeded the cracking strain. Therefore, it is recommended that future monitoring and inspection of PSC I girder bridges should focus on concrete strain or cracking.

Field Survey on the Maintenance Status of Greenhouses in Korea (온실의 유지관리 실태조사 분석)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Hyeon Tae;Lee, Si Young;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.148-157
    • /
    • 2014
  • The purpose of this study was to investigate greenhouse maintenance by farms by looking into greenhouses across the nation for greenhouse specification, disaster-resistance greenhouse construction, types and degree of damage due to natural disasters, pre-inspection in case of typhoon or heavy snow forecast, and fire-fighting facilities to prevent a fire. The findings were summarized as follows: as for greenhouse specification, the highest proportion of them were 90 m or longer both in single- and multi-span greenhouses in terms of length; 8 m or wider and 7.0~7.9 m in single- and multi-span greenhouses, respectively, in terms of width; 1.5~1.9 m and 2.0~2.9 m in single-and multi-span greenhouses, respectively, in terms of height; and 3.0~3.9 m and 6 m in single- and multi-span greenhouses, respectively, in terms of diameter. As for disaster-resistance greenhouses, farmers were reluctant to install such greenhouses. The low distribution of disaster-resistance greenhouses was attributed to the greenhouses built dependent on the old practice, the greenhouses already completed, and relatively high construction costs. As for damage by natural disasters, greenhouses were subject to more damage by typhoons than heavy snow. They mainly inspected the ceiling and side windows, entrances, and fixation bands for covering materials in case of typhoon forecast and the heating devices in case of heavy snow forecast. As for repair methods for greenhouse pipe corrosion, they preferred partial replacement to painting and did not use stiffeners for structures to prevent a natural disaster in most cases. As for the maintenance of greenhouse covering materials, most farmers inspected their sealing property but did not clean the coverings for light transmission. The destruction of structural materials can be prevented by eliminating greenhouse covering materials during a typhoon, but they were not able to do so because of the covering material replacement costs and the crops they were growing. The study also examined whether greenhouse farms had fire-fighting facilities to prevent a fire and found that they lacked the perception of greenhouse fire prevention to a great degree.

Effect of applied current density on the corrosion damage with galvanostatic corrosion experiment of aluminum alloy for ship (선박용 알루미늄 합금의 정전류 부식 시험에 의한 부식 손상에 미치는 인가 전류밀도의 영향)

  • Kim, Yeong-Bok;Park, Il-Cho;Lee, Jeong-Hyeong;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.106-106
    • /
    • 2018
  • 해양환경용 선박재료는 전기화학적인 부식을 발생시키는 염소이온($Cl^-$)이 다량 포함된 부식 환경에 장기간 노출되어 있어 부식에 대해 취약하다. 따라서 우수한 내식성 및 내침식성을 가진 재료를 선정하는 것은 매우 중요하다. 알루미늄 합금은 충분한 강도와 부동태 피막 형성으로 인해 내식성이 우수하여 해양환경용 선박 재료로서 널리 이용되고 있으며, 이에 따른 부식 특성에 관한 연구도 활발히 이뤄지고 있다. 그러나 선박에서는 부식에 의한 손상뿐만 아니라 전식에 의한 부식 손상도 발생할 수 있다. 특히 선미 부분은 프로펠러의 동합금과 알루미늄 합금의 이종금속 간 전위차에 의한 전식이 발생하여 선체의 다른 부위에 비해 부식이 더 심하게 진행될 수도 있다. 또한 전식은 해안 부두에 접안된 선박의 용접 시미주전류(stray current)에 의한 부식손상이 발생할 수 있으나 이에 대한 연구는 미미한 실정이다. 따라서 본 연구는 해양환경에서의 전식을 인위적으로 모사할 수 있는 부식 정전류 시험법을 이용하여 다양한 크기의 전식 손상을 유발시켰으며, 해양환경 하에서 선박재료로 주로 사용되는 알루미늄 합금인 Al5083-H321, Al5052-O, Al6061-T6에 대한 전식 특성을 비교, 분석하였다. 실험 방법으로 작동전극은 각 재료의 시험편을 $2cm{\times}2cm$ 으로 절단하여 sand paper # 2000 번까지 연마 후 아세톤과 증류수로 세척하고 건조하였으며, 제작된 시험편은 자체 제작한 홀더를 이용하여 $1cm^2$만 노출시킨 후 정전류 가속 실험을 실시하였다. 기준전극은 은/염화은(Ag/AgCl) 전극을, 대응전극은 백금(Pt) 전극을 사용하였다. 정전류 가속 조건은 $0.001mA/cm^2$, $0.1mA/cm^2$, $1mA/cm^2$, $5mA/cm^2$, $10mA/cm^2$의 전류 밀도를 천연해수에서 30분간 인가하였다. 각 재료에 대한 전식 특성은 실험 전후의 무게 감소량으로 전식의 저항 특성을 확인하였다. 그리고 3D 현미경으로 표면 손상 경향과 깊이를 측정하였으며, 주사전자현미경 (SEM)을 통해 표면 형상을 미시적으로 관찰하였다. 부식 정전류 시험 결과 모든 시편에서 $0.01mA/cm^2$에서 미세한 국부적인 부식이 일어났으며, 전류밀도가 증가할수록 표면 전반에 부식이 진행되고 성장하였다. 그리고 모든 인가 전류밀도의 조건에서 Al6061-T6가 5000계열(Al5083-H321, Al5052-O)보다 더 우수한 내식성을 나타났다.

  • PDF

Assessment of Skin Toxicity Using Skin Equivalents Containing Cervi cornus Colla (녹각교 함유 인공피부를 이용한 피부독성도의 검사)

  • Kim, Jandi;Li, Hailan;Jeong, Hyo-Soon;Yun, Hye-Young;Baek, Kwang Jin;Kwon, Nyoun Soo;Choi, Hye-Ryung;Park, Kyoung-Chan;Kim, Dong-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • To substitute animal test, skin equivalents (SEs) have been developed for skin irritation and corrosion test. Recently, we have developed new SEs containing Cervi cornus Colla (CCC). In the present study, we used the SEs for cutaneous cytotoxicity test. Sodium dodecylsulfate (SDS) or sodium carbonate was applied to the SEs-, and the epidermal damage by H&E and immunohistochemical stains was evaluated. Our results showed that SDS or sodium carbonate affected the epidermal part of SEs containing CCC in a dose-dependent manner and decreased the expression of p63. It is concluded that SEs containing CCC could be used for an alternative model of animal test and would be greatly helpful in the development of in vitro irritation and corrosion test.

A Study on the Application of Non-destructive (Ultrasonic) Inspection Technique to Detect Defects of Anchor Bolts for Road Facilities (도로시설물 적용 앵커볼트 결함 검출을 위한 비파괴(Ultrasonic) 검사 기법 적용에 대한 연구)

  • Dong-Woo Seo;Jaehwan Kim;Jin-Hyuk Lee;Han-Min Cho;Sangki Park;Min-Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • The general non-destructive inspection method for anchor bolts in Korea applies visual inspection and hammering inspection, but it is difficult to check corrosion or fatigue cracks of anchor bolts in the part included in the foundation or in the part where the nut and base plate are installed. In reality, objective investigation is difficult because inspection is affected by the surrounding environment and individual differences, so it is necessary to develop non-destructive inspection technology that can quantitatively estimate these defects. Inspection of the anchor bolts of domestic road facilities is carried out by visual inspection, and since the importance of anchor bolts such as bridge bearings and fall prevention facilities is high, the life span of bridges is extended through preventive maintenance by developing non-destructive testing technology along with existing inspection methods. Through the development of this technology, non-destructive testing of anchor bolts is performed and as a technology capable of preemptive/active maintenance of anchor bolts for road facilities, practical use is urgently needed. In this paper, the possibility of detecting defects in anchor bolts such as corrosion and cracks and reliability were experimentally verified by applying the ultrasonic test among non-destructive inspection techniques. When the technology development is completed, it is expected that it will be possible to realize preemptive/active maintenance of anchor bolts by securing source technology for improving inspection reliability.

Acid Drainage and Damage Reduction Strategy in Construction Site: An Introduction (건설현장 산성배수의 발생현황 및 피해저감대책)

  • Kim, Jae-Gon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.651-660
    • /
    • 2007
  • Acid drainage has been recognized as an environmental concern in abandoned mine sites for long time. Recently, the environmental and structural damage by acid drainage is a current issue in construction sites in Korea. Here, the author introduces the type of damages by acid drainage in construction sites and emphasizes the importance of geoscience discipline in solving the problem. Metasedimentary rock of Okcheon group, coal bed of Pyeongan group, Mesozoic volcanic rock. and Tertiary sedimentary and volcanic rocks are the major rock types with a high potential for acid drainage upon excavation in Korea. The acid drainage causes the acidification and heavy metal contamination of soil, surface water and groundwater, the reduction of slope stability, the corrosion of slope structure, the damage on plant growth, the damage on landscape and the deterioration of concrete and asphalt pavement. The countermeasure for acid drainage is the treatment of acid drainage and the prevention of acid drainage. The treatment of acid drainage can be classified into active and passive treatments depending on the degree of natural process in the treatment. Removal of oxidants, reduction of oxidant generation and encapsulation of sulfide are employed for the prevention of acid drainage generation.