• Title/Summary/Keyword: Correction equation

Search Result 370, Processing Time 0.026 seconds

A viscoelastic constitutive model of rubber under small oscillatory loads superimposed on large static deformation (정적 대변형에 중첩된 미소 동적 하중을 견디는 고무재료의 점탄성 구성방정식에 관한 연구)

  • Kim, Bong-Kyu;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.280-285
    • /
    • 2000
  • A viscoelastic constitutive equation of rubber that is under small oscillatory load superimposed on large static deformation is proposed. The proposed model is derived through linearization of Simo's viscoelastic constitutive model and reference configuration transformation. The proposed constitutive equation is extended to a generalized viscoelastic constitutive equation that includes widely used Mormin's model as a special case using objective stress increment. Static deformation correction factor is introduced to consider the influence of Pre-strain on the relaxation function. The proposed constitutive model is tested fer dynamic behavior of rubber specimens with different carbon black contents. It is concluded from the test that the viscoelastic constitutive equation for filled rubber must include the influence of the static deformation on the time effects. The suggested constitutive equation with static deformation correction factor shows good agreement with test values.

  • PDF

Proposal of an Equation for the Evaluation of Discomfort of a Seated Human Body Due to the Differential Vertical Vibration at the Seat and the Floor (시트와 바닥 진동의 위상차가 안락성에 미치는 영향을 평가하기 위한 수식의 제안)

  • 장한기
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.626-631
    • /
    • 2002
  • A modified equation for the evaluation of discomfort of a seated human body exposed to differential vibration at the seat and the floor was proposed in this paper. Through the review and analysis of the preceding studies, effect of phase difference between the seat and the floor vibration on discomfort were quantitatively identified. The phase effect was shown to be governed by not only phase difference between the two vibrations but both their frequency and the magnitude, which means the present equation for the evaluation of perceptual amount of vibration provided by ISO 2631-1 should be modified. The proposed equation was developed such that the correction function was multiplied to the present equation. The correction function consisted of three parts, each of them represented the effect by phase difference, frequency and vibration magnitude on discomfort respectively.

Quantum theory of multiwave mixing with a local field correction

  • An, Sung-Hyuck;Rhee, Bum-Ku
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.94-99
    • /
    • 1997
  • In this paper, we calculate the four coefficients for the quantum theory of multiwave mixing including a local-field correction resulting from dipole-dipole interactions. We make contact with the semiclassical calculations of probe absorption and four-wave-mixing coupling coefficients, and illustrate the effects of local field corrections on resonance-fluorescence and coupled-mode-fluorescence spectra. The method uses the hybrid quantum-Langevin-equation master-equation approach of An and Sargent.

Conservative Upwind Correction Method for Scalar Linear Hyperbolic Equations

  • Kim, Sang Dong;Lee, Yong Hun;Shin, Byeong Chun
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.309-322
    • /
    • 2021
  • A conservative scheme for solving scalar hyperbolic equations is presented using a quadrature rule and an ODE solver. This numerical scheme consists of an upwind part, plus a correction part which is derived by introducing a new variable for the given hyperbolic equation. Furthermore, the stability and accuracy of the derived algorithm is shown with numerous computations.

Crack width control of precast deck loop joints for continuous steel-concrete composite girder bridges

  • Shim, Changsu;Lee, Chidong
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.21-34
    • /
    • 2020
  • Precast deck joints have larger crack width than cast-in-place concrete decks. The initial crack typically occurs at the maximum moment but cracks on precast joints are significant and lead to failure of the deck. The present crack equation is applied to cast-in-place decks, and requires correction to calculate the crack width of precast deck joints. This research aims to study the crack width correction equation of precast decks by performing static tests using high strength and normal strength concrete. Based on experimental results, the bending strength of the structural connections of the current precast deck is satisfied. However it is not suitable to calculate and control the crack width of precast loop connections using the current design equation. A crack width calculation equation is proposed for crack control of precast deck loop joints. Also included in this paper are recommendations to improve the crack control of loop connections.

Precise Gravity Terrain Correction of Gravity Exploration for Small Anomalous Bodies (소규모 이상체의 중력탐사를 위한 정밀지형보정)

  • Lee, Heui-Soon;Rim, Hyoung-Rea
    • Journal of the Korean earth science society
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Many studies have successfully developed a number of terrain correction programs in gravity data. Furthermore, terrain data that is a basic data for terrain correction has widely been provided through internet. We have also developed our own precise gravity terrain correction program. The currently existing gravity terrain correction programs have been developed for regional scale gravity survey, thus a more precise gravity terrain correction program needs to be developed to correct terrain effect. This precise gravity terrain program can be applied on small size geologic targets, such as small scale underground resources or underground cavities. The multiquadric equation has been applied to create a mathematical terrain surface from basic terrain data. Users of this terrain correction program can put additional terrain data to make more precise terrain correction. In addition, height differences between terrain and base of gravity meter can be corrected in this program.

A Study on Reduction Effects of Air Pollutant Emissions by Automotive Fuel Standard Reinforcement (자동차연료 기준강화에 따른 대기오염물질 배출량 저감효과)

  • Lim, Cheol-Soo;Hong, Ji-Hyung;Kim, Jeong-Soo;Lee, Jong-Tae;Lim, Yun-Sung;Kim, Sang-Kyu;Jeon, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • The air pollutants from vehicle exhaust gas are affected by many factors including fuel qualities, engine and vehicle technologies, driving patterns. In particular, fuel qualities and after-treatment devices could directly affect the emission level of pollutants. The pollutant reduction characteristics that caused by enforced fuel quality standard were analyzed. Three types of test fuel were selected in accordance with Korean automotive fuel standard in 2006, 2009, 2012 and used for vehicle emission test in chassis dynamometer. European COPERT correction equation of fuel impact was considered as reference information to quantify the vehicle emission test results. The contribution rates of exhaust emission by COPERT correction equation showed that aromatic compounds and oxygen contents in gasoline fuel was most important. In case of diesel fuel, cetane index and polycyclic aromatic compounds accounted for the greater part. The exhaust emission effects by COPERT correction equation revealed that CO and VOC was increased 0.86%, 1.57% respectively in after 2009 gasoline when compared to before 2009 gasoline fuel. In case of light-duty diesel vehicle CO, VOC and PM were decreased in range of 3~7%. The result from this study could be provided for developing future fuel standards and be used to fundamental information for Korean clean air act.

Numerical investigation into cavitation flow noise of hydrofoil using quadrupole-corrected Ffowcs Williams and Hawkings equation (사중극자 보정 Ffowcs Williams and Hawkings 방정식을 이용한 수중 익형 공동 유동소음에 대한 수치적 고찰)

  • Ku, Garam;Ryu, Seo-Yoon;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.263-270
    • /
    • 2018
  • In most industry fields concerning external flow noise problems, the hybrid computational aeroacoustic techniques based on the FW-H (Ffowcs Williams and Hawkings) equation are widely used for its numerical efficiency. However, when the surface integral form of FW-H equation is used without volume quadrupole sources, it is known to generate significant non-physical noise in a certain case. Especially, in the case of a flow in which the tip vortex cavitation is formed in the distant downstream direction such as flow driven by an underwater propeller, the accuracy in noise prediction becomes poor unless it is not properly modelled. Therefore, in this study, the nonphysical acoustic waves caused by the surface integral form of FW-H equation is reduced by adding the quadrupole correction term. First, to verify the accuracy of the in-house code of FW-H equation, the noise by an axial fan used in the outdoor unit of air conditioner was calculated and compared with the results of ANSYS Fluent. In order to verify the effects of the quadrupole correction term, the noise prediction for isentropic vortex convection is performed and it is confirmed that the error is reduced by the quadrupole correction term. Finally, the noise prediction is performed for the flow field generated by the Clark-Y hydrofoil in underwater. It is confirmed that the error caused by the cavitation passing through the integral surface can be reduced by the quadrupole correction term.

Enhanced Equivalent Circuit Modeling for Li-ion Battery Using Recursive Parameter Correction

  • Ko, Sung-Tae;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1147-1155
    • /
    • 2018
  • This paper presents an improved method to determine the internal parameters for improving accuracy of a lithium ion battery equivalent circuit model. Conventional methods for the parameter estimation directly using the curve fitting results generate the phenomenon to be incorrect due to the influence of the internal capacitive impedance. To solve this phenomenon, simple correction procedure with transient state analysis is proposed and added to the parameter estimation method. Furthermore, conventional dynamic equation for correction is enhanced with advanced RC impedance dynamic equation so that the proposed modeling results describe the battery dynamic characteristics more exactly. The improved accuracy of the battery model by the proposed modeling method is verified by single cell experiments compared to the other type of models.

Application of Pressure Correction Method to CFD Work for 8 Centrifugal Compressor Impellers (압력보정법을 이용한 8개의 원심압축기 임펠러 CFD의 적용 연구)

  • Oh, Jongsik;Ro, SooHyuk;Hyun, YongIk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.226-235
    • /
    • 2000
  • Two representative finite volume methods, i.e., the time marching method and the pressure correction method, were applied to 8 centrifugal compressor impeller flows, with low to very high level of pressure ratio, among which 7 impellers' experimental performance is given in the open literature. The present study is focused on the prediction differences from both methods, developed by the authors, in the pressure correction method's point of view. In all cases, the time marching method gives a satifactory solution, but the pressure correction method does not. Up to about $18\%$ less level of total-to-total pressure ratio is predicted by the pressure correction method as the level of the impeller pressure ratio increases up to about 10. The drop of total pressure ratio is caused by the underestimation of static pressure rise which seems to be attributed to inappropriate linearization and discretization of the pressure/density coupling terms in the pressure correction equation.

  • PDF