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Abstract. A conservative scheme for solving scalar hyperbolic equations is presented

using a quadrature rule and an ODE solver. This numerical scheme consists of an upwind

part, plus a correction part which is derived by introducing a new variable for the given

hyperbolic equation. Furthermore, the stability and accuracy of the derived algorithm is

shown with numerous computations.

1. Introduction

It is well known that lower order numerical methods, such as various monotone
methods, behave well near discontinuities, while high order numerical methods,
such as the Lax-Wendroff method, work well in smooth regions (see [14, 15] for
example). Monotone methods are first-order accurate due to Godunov’s theorem.
They do not produce non-physical phenomena such as smearing of the solution or
spurious oscillations. On the other hand, high-order methods yield non-physical
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phenomena when shocks are presented.

The total variation diminishing (TVD) technique has long been used as one of
the various techniques for avoiding the spurious or non-physical oscillations exhib-
ited by high-order schemes. It requires one to modify a high-order method such as
the Lax-Wendroff method (see [2, 13, 15, 19] and etc., for example) using flux- or
slope- limiter techniques.

The main goal of this paper is to introduce a correction technique to the upwind
method, another known method for eliminating undesired non-physical phenomena,
to solve a simple scalar linear hyperbolic equation without the help of any limiter
techniques. The first step towards realising this goal is to split the hyperbolic
equation ut + aux = 0 by introducing a new flux variable v = aux (see [10]). As
a result, we have a system of ordinary differential equations consisting of v = aux
and ut + v = 0. Our conservative method then consists of two-steps: the first-step
is to set up a correction scheme for v = aux and the second-step is a scheme for
ut+v = 0. Once we deal with the two equations separately and then combine them,
we have a new conservative scheme which is composed of the upwind scheme plus
a correction term.

The correction term behaves like a high-resolution correction (see p.163 in [15])
while the upwind method of the form Umj −ν2(Umj −Umj−1) obtains a low-resolution
behavior. As a result, we obtain a stable scheme which is second-order accurate for
u. It has been also been frequently observed [4, 11, 12, 13, 14, 15, 17, 18, 19] that a
high resolution method using a flux-limiter has a restricted TVD region, and so the
limiter functions must be chosen within this TVD region. Our proposed method
does not use any limiter functions, so this is not a concern. Moreover it is not only
second-order accurate, but also has the almost l1 contracting property.

Our other goal is to computationally compare the proposed algorithm with
the well-known upwind, Lax-Wendroff and flux-limiter methods, and to show the
second-order local truncation error of the proposed algorithm. The order of conver-
gence of the upwind correction scheme in comparible to that of min-mode type
schemes reported in [8] and [16] and that of the fully-discrete high-resolution
schemes with van Leer’s flux limiter reported in [7], for example.

This paper is layed out as follows. In Section 2, we will present how the algo-
rithm can be derived. In Section 3, the almost l1 contracting property and trunca-
tion error estimates are shown. In Section 4, numerous examples are presented by
comparing the present method with other well-known methods using flux-limiters.
In the concluding section, we mention and discuss a possibility for expanding the
present method to a nonlinear scalar hyperbolic equations.

2. Error Correction Upwind Method

We consider the following simple linear hyperbolic equation

(2.1) ut + aux = 0
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with initial data

(2.2) u(x, 0) = u0(x).

By introducing a new variable v = aux, (2.1) can be written as

(2.3) ut + v = 0, v = aux, u(x, 0) = u0(x), v(x, 0) = au′0(x).

Lemma 2.1. Assume that the solution of (2.1) is sufficiently smooth. Then the
system of ordinary differential equations (2.3) is equivalent to

(2.4) ut + v = 0, vt + avx = 0, u(x, 0) = u0(x), v(x, 0) = au′0(x).

Proof. From (2.3), it follows that

vt + avx = a(ut + aux)x = 0,

which implies (2.4). On the other hand, assuming (2.4) we have

0 = vt + avx = (v − aux)t = 0.

Hence, we have v − aux = c. Then, the initial condition shows v = aux. This
implies (2.3). 2

Now, let us discuss the discretization for which we assume that the domain
(−∞,∞)× [0, T ] has the discrete mesh points (xj , tm) given by

xj = jh, j = · · · ,−1, 0, 1, 2, · · · , and tm = mτ, m = 0, 1, 2, · · ·

where h and τ denote a mesh width and a time step, respectively.
We will present a conservative method for ut = −v by applying 3rd order

Runge-Kutta method which leads us

(2.5) u(x, tm+1) = u(x, tm)− τ

6

(
v(x, tm) + 4v(x, tm+1/2) + v(x, tm+1)

)
+O(τ3)

where, for an approximation of v(x, tm+1/2), we consider v(x, tm+1/2) as a convex
combination of v(x, tm) and v(x, tm+1) such that

(2.6) v(x, tm+1/2) := γv(x, tm) + (1− γ)v(x, tm+1), γ > 0.

Later, a parameter γ in (2.6) will be taken to adjust the convergence of the proposed
algorithm. With this, (2.5) can be written as

(2.7) u(x, tm+1) ∼ u(x, tm)− τ

6

(
(1 + 4γ)v(x, tm) + (5− 4γ)v(x, tm+1)

)
.
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For the approximation of the values of the solution u(x, t) at (xj , tm), we use the
notation Umj , but for the conservation laws we approximate the cell average of
u(x, tm), rather than u(xj , tm), i.e.,

(2.8) Umj ≈
1

h

∫ xj+1/2

xj−1/2

u(x, tm)dx.

Also we use the notation V mj to approximate the cell average of v(x, tm), i.e.,

(2.9) V mj ≈
1

h

∫ xj+1/2

xj−1/2

v(x, tm)dx.

Taking the cell-average of the both sides of (2.7), we have

(2.10) Um+1
j = Umj −

τ

6

[
(1 + 4γ)V mj + (5− 4γ)V m+1

j

]
.

For a conservative scheme for v = aux, we employ the Simpson’s numerical
quadrature

(2.11)

∫ tm+1

tm

f(t)dt =
τ

6

[
f(tm) + 4f(tm +

τ

2
) + f(tm+1)

]
+O(τ5),

to approximate the integral of v = ux on time interval [tm, tm+1]∫ tm+1

tm

v(x, t) dt = a

∫ tm+1

tm

ux(x, t) dt.

As a result, it follows that

v(x, tm+1) + 4v(x, tm +
τ

2
) + v(x, tm) =

6a

τ

∫ tm+1

tm

ux(x, t)dt+O(τ4),(2.12)

in which we approximate v(x, tm + τ
2 ) with the linear combination of v(x, tm) and

v(x, tm+1) given by

v
(
x, tm +

τ

2

)
:= δv(x, tm) + (1− δ)v(x, tm+1).(2.13)

Here, the positive constants δ, which differ from γ in (2.6), will be chosen later.
Using (2.13), we can rewrite (2.12) as

(2.14) v(x, tm+1) ∼ −1 + 4δ

5− 4δ
v(x, tm) +

1

5− 4δ

6a

τ

∫ tm+1

tm

ux(x, t)dt+ · · ·

Taking the cell-average for (2.14) on Ij := [xj−1/2, xj+1/2] (see [14, 15], for example)

1

h

∫
Ij

v(x, tm+1)dx ∼ − 1 + 4δ

5− 4δ

1

h

∫
Ij

v(x, tm)dx(2.15)

+
1

5− 4δ

6a

h

1

τ

∫ tm+1

tm

[
u(xj+1/2, t)− u(xj−1/2, t)

]
dt+ · · · .
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leads to the conservative numerical method for v = ux. Let us set

(2.16) F(Umj , U
m
j+1) ∼ 1

τ

∫ tm+1

tm

u(xj+1/2, t)dt.

Then, (2.15) becomes

V m+1
j = −1 + 4δ

5− 4δ
V mj +

6a

h

1

5− 4δ

[
F(Umj , U

m
j+1)− F(Umj−1, U

m
j )
]
.(2.17)

Hence, using (2.10) for ut = −v and (2.17), the new conservative method with

(2.18) F(Umj , U
m
j+1) = Umj

can be written as

V m+1
j = −1 + 4δ

5− 4δ
V mj +

6a

h

1

5− 4δ

[
Umj − Umj−1

]
(2.19)

Um+1
j = Umj −

τ

6

[
(1 + 4γ)V mj + (5− 4γ)V m+1

j

]
(2.20)

where the parameters δ and γ will be chosen with proper accuracy in Section 3.
Actually, the two constants

(2.21) δ =
1

4

(
5− 3h

aτ

)
, and γ =

1

2
,

will be chosen so that (2.20) and the correction term V mj from (2.19) lead to the
following algorithm.

Um+1
j = Umj − ν2 (Umj − Umj−1) − ν

(h
a
− τ
)
V mj , ν =

aτ

h
(2.22)

= upwind method + correction

V m+1
j =

(
1− 2ν

)
V mj +

2ν2

τ

[
Umj − Umj−1

]
.(2.23)

It will be shown in Section 3 that the local truncation error of (2.22) is of second-
order and that of (2.23) is of first-order. Due to Lemma 2.1, it may be suggested
to allow the correction term V mj in (2.22) updated by (2.23) as the exact solution
to vt + avx = 0. Since the exact solution for the equation vt + avx = 0 is v(x, t) =
v0(x− at), we get the revised algorithm as following:

Algorithm 2.1. For the linear problem ut +aux = 0, with U0
j = 1

h

∫ xj+1/2

xj−1/2
u0(x)dx

and V 0
j = a

h

[
u0(xj+1/2)−u0(xj−1/2)

]
as initial data, iterates for m = 0, 1, · · · , and

j = 0, 1, · · ·

Um+1
j = Umj − ν2 (Umj − Umj−1) − ν

(h
a
− τ
)
V 0
k(2.24)

= upwind method + correction,
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where the integer index k is chosen to be

xk+ 1
2

= xj+ 1
2
− atm.

3. Local Truncation Error and Stability

Let us denote (2.19) by V m+1 = N(Um, V m ) and (2.20) by Um+1 =
N(Um, V m, V m+1 ) for the accuracy of convergence where V m and Um are replaced
with the exact solution u(x, t) and v(x, t) at (xj , tm) respectively in the method

(2.19) and (2.20). The local truncation errors E(vm) := 1
τ

[
N(um, vm)−vm+1

]
and

E(um) := 1
τ

[
N(um, vm, vm+1) − um+1

]
for (2.19) and (2.20), respectively, can be

shown using the Taylor expansion of u and v at the point (xj , tm).
Assuming that its exact solution is smooth enough, the following relations are

hold:

utt = −vt, uttt = −vtt, vt = auxt = −avx = −a2uxx, a2uxx = utt,

−a2uxxx = vxt = −avxx = −uttx, vtt = −uttt = −a2uxxt = auxtt = a3uxxx.

In fact, since v = aux and vt = −a2uxx. vtt = a3uxxx, we have

−τE(vm) =
(
−a2τ +

3ah

5− 4δ

)
(uxx)mj +

(a3τ2
2
− ah2

5− 4δ

)
(uxxx)mj + · · ·(3.1)

and, using ut + v = 0, a2uxx = utt = −vt and vtt = a3uxxx = −uttt, we have

−τE(um) = τ2
(1

2
− 5− 4γ

6

)
(utt)

m
j + τ3

(1

6
− 5− 4γ

12

)
(uttt)

m
j + · · · .(3.2)

Hence, if one takes the constants δ and γ in (3.1) and (3.2) as

(3.3) δ =
1

4

(
5− 3h

aτ

)
, and γ =

1

2
,

then it follows that for a fixed aτ
h =: ν

(3.4) E(vm) = O(τ), and E(um) = O(τ2)

With parameters from (3.3), the algorithm (2.19) and (2.20) becomes

V m+1
j =

(
1− 2ν

)
V mj +

2ν2

τ

[
Umj − Umj−1

]
(3.5)

Um+1
j = Umj −

τ

2

[
V m+1
j + V mj

]
,(3.6)

whose combination leads to (2.22) and (2.23).
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Summarizing the above arguments, we have

Theorem 3.1. Suppose that the solution is smooth enough. Then the local trunca-
tion errors for {Um} and {V m} generated by the algorithm (3.5) and (3.6) for the
problem ut + aux = 0 are

E(vm) = O(τ), and E(um) = O(τ2).

Hence, (3.5) and (3.6) are first and second-order accuracy respectively.

Let us denote (2.24) as Um+1 = N(Um, V 0 ). The local truncation error

E(um) := 1
τ

[
N(um, v0) − um+1

]
will be analyzed in the following theorem. For

the initial V 0
k , note that the exact solution to vt + avx = 0 is v(x, t) = v0(x− at) =

au′0(x− at) and that, due to the relation of the index k and j in algorithm (2.24),
we have

V mj =
1

h

∫
Ij

v(x, tm)dx

=
a

h

(
u0(xj+ 1

2
− atm)− u0(xj− 1

2
− atm)

)
=
a

h

(
u0(xk+ 1

2
)− u0(xk− 1

2
)
)

=
1

h

∫
Ik

au′0(x)dx =
1

h

∫
Ik

v(x, 0)dx = V 0
k .(3.7)

Theorem 3.2. Suppose that the solution is smooth enough. Then the local trun-
cation error for {Um} generated by Algorithm (2.24) for the problem ut + aux = 0
is

E(um) =
a2τ

6
(aτ − h)uxxx = O(τ2).

Proof. First note that the correction term V 0
k is V jm in algorithm (2.24) due to

(3.7). Therefore, using ut + v = 0, aux − v = 0, utt = a2uxx and uttt − a3uxxx = 0,
it follows that

−τE(um) = (u)m+1
j − (u)mj + ν2((u)mj − (u)mj−1) + ν

(h
a
− τ
)

(v)mj

= τ(ut + v)mj +
aτ2

h
(aux − v)mj +

τ2

2
(utt − a2uxx)mj

+
a2τ2

6
(h− aτ)(uxxx)mj + · · ·

=
a2τ2

6
(h− aτ)(uxxx)mj + · · · .(3.8)

This completes the proof. 2

We note that using (3.8) one may have a modified equation for ut + aux = 0
(see [1, 15, 20] for example). Since v = aux and utt = a2uxx, the modified equation
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turns out to be

(3.9) ut + aux =
a2τ

6
(h− aτ) uxxx

which is compared to the modified equation ut + aux = − 1
6ah

2(1 − ν2)uxxx for
Lax-Wendroff scheme (see [2, 3, 15] for example).

Theorem 3.3. Let 0 ≤ ν ≤ 1. The sequence {Um} generated by Algorithm for the
problem ut + aux = 0 satisfies

‖Um+1‖1 ≤ ‖Um‖1 + ν
∣∣∣h
a
− τ
∣∣∣‖V 0‖1

where ‖ · ‖1 denotes the l1 norm of a vector W := (w1, w2, · · · , wk).

Proof. From the algorithm

Um+1
j = (1− ν2)Umj + ν2 Umj−1 − ν

(h
a
− τ
)
V 0
k ,

it follows that

|Um+1
j | ≤ (1− ν2)|Umj | + ν2 |Umj−1| + ν

∣∣∣h
a
− τ
∣∣∣ |V 0

k |.

Hence, one has the conclusion by taking summation.. 2

Note that, according to the above theorems, the new method has almost l1
contracting property on ‖Um‖1 with second-order accuracy.

4. Numerical Example

We will take a typical linear hyperbolic equation ut + aux = 0 (a = 1) with
several initial data. The numerical solution from the proposed Algorithm will be
compared by upwind method, Lax-Wendroff method and several flux methods.

Example 4.1. The first initial condition is given by

(4.1) u0(x) =


e−1000(x−0.2)

2

, for 0.1 < x < 0.3

1, for 0.4 < x < 0.6

1− 100(x− 0.8)2, for 0.7 < x < 0.9.

By comparing the numerical solutions of the proposed upwind correction scheme
(UC) with the classical upwind method and the Lax-Wendroff method, we see the
effects of the correction term V 0

k with the weight ν(h − τ). While the numerical
behavior of the UC scheme without the correction term are same as those of upwind
method with ν2, the numerical behavior do reveal little spurious oscillations or
smearing of the solution (see Figure 4.1). Next, we compare the numerical solutions
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(c) at time t = 3, ν = 0.6 (d) at time t = 5, ν = 0.8

Figure 4.1: The numerical solutions for the linear equation for the initial
data (4.1) at t = 1, 2, 3, and 5 with the step size h = 1/100.
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Figure 4.2: The numerical solutions for the linear equation for the initial
data (4.1) at t = 1, 2, 3, and 5 with the step size h = 1/100.
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of the UC scheme with the Godunov’s method for several flux limiters such as
minmod, superbee, van Leer and mc. As shown in Figure 4.2, one may notice that
the proposed scheme yields much better approximations to exact solution than the
Godunov’s method yields.

Example 4.2. The second initial condition will be chosen as the smooth

(4.2) u0(x) = −x2 sin(3πx).

Comparing the numerical solutions of the UC scheme with the classical upwind
method and the Lax-Wendroff method, one may see that the smooth exact solu-
tion can be almost exactly approximated comparing to second-order Lax-Wendroff
method even if both two methods keep the same second-order accuracy.

Example 4.3. The third initial condition is given by

(4.3) u0(x) =

{
1, for 0 < x < 0.5

0, elsewhere
.

In this example, the initial data has only one singularity. The numerical solutions of
the UC scheme are compared with the Godunov’s method for several flux limiters.

The UC scheme shows a better approximation comparing to those of the Go-
dunov’s method( see [2, 15] , etc.). Throughout numerous demonstrated examples,
one can verify that such better approximations can be obtained. The reason is that
the developed method (UC) is of second-order accurate with almost l1 contracting
property.

5. Further Discussion

The newly developed method which works for linear scalar hyperbolic equations
uses the upwind algorithm plus a correction term whose weight is chosen as ν(ha−τ).
This particular weight is derived by combining the first-order correction algorithm
for v = ux and the second-order algorithm for ut = −v. It is shown that the pro-
posed upwind correction method has second-order accurate local truncation error
with almost l1 contracting property while a high-order method using flux-limiter
function preserves the TVD property.

As done for a linear hyperbolic equation, one may apply the developed algo-
rithm to a nonlinear scalar hyperbolic equation ut + fx(u) = 0 with given initial
data u(x, 0) = u0(x) following known techniques (see [14, 15] for example ). How-
ever, in an attempt to expand the developed techniques in this paper to a nonlinear
scalar equation directly, one will likely have to find a nice weight to make the com-
putations feasible. Such issues will be discussed in a upcoming paper.
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Figure 4.3: The numerical solutions for the linear equation for the initial
data (4.2) at t = 1, 3, 6, and 10 with the step size h = 1/20.
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Figure 4.4: The numerical solutions for the linear equation for the initial
data (4.3) at t = 1, 3, 5, and 9 with the step size h = 1/50.
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